Abstract:
The configurations of a parallel-connected resonant converter circuit and a controlling method thereof are provided in the present invention. The proposed circuit includes a plurality of resonant converters, each of which has two input terminals and two output terminals, wherein all the two input terminals of the plurality of resonant converters are electrically series-connected, and all the two output terminals of the plurality of resonant converters are electrically parallel-connected.
Abstract:
A method and circuit for improving the crest factor of the gas discharge lamp. The method includes: the signal of the gas discharge lamp can be sampled to get a status signal; whether the present stage of the gas discharge lamp is at warm up stage or constant power stage can be judged based on the result of comparison between the status signal and a preset value; preset parameters can be selected based on the stage of the gas discharge lamp, the first parameter can be selected when the gas discharge lamp is at a warm up stage, and the second parameter can be selected when the gas discharge lamp is at a constant power stage; a control signal can be outputted during the lamp current commutation based on the selected first or second parameter to improve the crest factor of the gas discharge lamp.
Abstract:
The configurations of a three-phase buck-boost power factor correction (PFC) circuit and a controlling method thereof are provided in the present invention. The proposed circuit includes a first single-phase buck-boost PFC circuit receiving a first phase voltage and having a first and a second output terminals and a neutral-point for outputting a first and a second output voltages, a second single-phase buck-boost PFC circuit receiving a second phase voltage and coupled to the first and the second output terminals and the neutral-point, a third single-phase buck-boost PFC circuit receiving a third phase voltage and coupled to the first and the second output terminals and the neutral-point, a first and a second output capacitors coupled to the first and the second output terminals respectively, and to the neutral-point also and a neutral line coupled to the neutral-point.
Abstract:
The configurations of a single-phase dual buck-boost/buck power factor correction (PFC) circuit and a controlling method thereof are provided in the present invention. The proposed circuit includes a single-phase three-level buck-boost PFC circuit receiving an input voltage and having a first output terminal, a neutral-point and a second output terminal for outputting a first and a second output voltages, a single-phase three-level buck PFC circuit receiving the input voltage and coupled to the first output terminal, the neutral-point and the second output terminal, a first output capacitor coupled to the first output terminal and the neutral-point, a second output capacitor coupled to the neutral-point and the second output terminal, and a neutral line coupled to the neutral-point.
Abstract:
The present invention provides an illumination device, an illumination system, and a lamp. The illumination system includes the illumination device and a light modulation module. The illumination device includes a light emitting diode (LED) array, an alternating current (AC) current source, and an output power control module. The AC current source is electrically coupled to the LED array. The output power control module is electrically coupled to the LED array and the AC current source. The LED array, the AC current source, and the output power control module together form a closed-loop control loop. The light modulation module is electrically coupled to the closed-loop control loop for modulating illumination brightness of the LED.
Abstract:
The configurations of an H-bridge circuit and a controlling method thereof are provided in the present invention. The proposed circuit includes an H-bridge having a first and a second bridge arms, each of which has a middle point, and a bidirectional switch connected to the two middle points, a bootstrap circuit providing a bootstrap voltage, a driving circuit receiving the bootstrap voltage and driving the bidirectional switch, and an energy compensation circuit coupled to the H-bridge, the bootstrap circuit and the driving circuit, and providing a compensation energy to the bootstrap circuit.
Abstract:
A high intensity discharge lamp (HID) control circuit and method are provided in the present invention. The circuit includes a first winding and a second winding, both of which are coupled with a series-connected inductor of an HID lamp circuit; a current zero point detector for detecting an inductor current zero crossing signal in the HID lamp circuit; an inductor current signal generator for generating an inductor current signal in the circuit to indicate a current value of the HID lamp; a modulator having input terminals connected to the current zero point detector and the inductor current signal generator, respectively, and an output terminal connected to a driving circuit for the HID lamp; and the driving circuit for driving switches in the HID lamp control circuit.
Abstract:
The configurations of a parallel-connected resonant converter circuit and a controlling method thereof are provided in the present invention. The proposed circuit includes a plurality of resonant converters, each of which has two input terminals and two output terminals, wherein all the two input terminals of the plurality of resonant converters are electrically series-connected, and all the two output terminals of the plurality of resonant converters are electrically parallel-connected.
Abstract:
The configurations of a parallel-connected resonant converter circuit and a controlling method thereof are provided in the present invention. The proposed circuit includes a plurality of resonant converters, each of which has two input terminals and two output terminals, wherein all the two input terminals of the plurality of resonant converters are electrically series-connected, and all the two output terminals of the plurality of resonant converters are electrically parallel-connected.
Abstract:
A connector and a power transformer structure comprising the same are provided. The power transformer structure comprises a connector and an integrated transformer. The connector comprises a plurality of connection units, and the integrated transformer comprises a plurality of transformation units. The transformation units are sequentially stacked and electronically connected to the corresponding connection units in contact connection to reduce the current conduction consumption and contact resistance.