Abstract:
A cam activated circuit card clamp is provided. The circuit card clamp is comprised of a base member (204), a leverage arm (412), and a cam activation shaft (422). The circuit card clamp is also comprised of one or more cams (410-1, 410-2, 410-3, 410-4), one or more ramp members (308-1, 308-2, 308-3, 308-4), and one or more wedge members (418-1, 418-2, 418-3, 418-4). The cam activation shaft is coupled to the leverage arm. The cams are in contact with the cam activation shaft which has one or more compression springs disposed thereon. The cams are adapted to pivot about a pivot shaft when actuated. The cams also have a surface adapted to engage an adjacent wedge member when actuated. Each ramp member has an inclined surface adapted to deflect an adjacent wedge member when the adjacent wedge member is compressed against the ramp member. Each wedge member has a surface adapted to engage an adjacent cam. Each wedge member also has an inclined surface adapted to slidingly engage an adjacent ramp member when compressed together. A method for applying a clamping force to a circuit card is also provided.
Abstract:
An optical access apparatus is provided. The optical access apparatus includes a mounting plate, characterized in that the mounting plate has a bent portion acting as a balance plate of the optical access apparatus.
Abstract:
A method of programming a phase change device includes selecting a desired threshold voltage (Vth) and applying a programming pulse to a phase change material in the phase change device. The applying of the programming pulse includes applying a quantity of energy to the phase change material to drive at least a portion of this material above a melting energy level. A portion of the energy applied to the phase change material is allowed to dissipate below the melting energy level. The shape of the energy dissipation from the phase change material is controlled until the energy applied to the phase change material is less than a quenched energy level, to cause the phase change device to have the desired Vth. A remaining portion of the energy applied to the phase change material is allowed to dissipate to an environmental level.
Abstract:
The protruding tail of the fin on the upper side of the heat sink is formed as a cone, hence the blowing-in airflow follows the lead to the bottom resulting in better performance of ejection.There is a tooling hole on the side plate of the underside in the heat sink for the convenience of separating the adjacency heat sinks and separators in suitable space.There is also a corresponding retaining hole above the separator. This will force the two rivets pass through the fixed body in order. The thin cone heat sink could increase the space of the separators and double the area of the heat radiation, help the airflow absorb the heat following the surrounding air and simultaneously increase the heat ejection performance so as to achieve the main usages for the industry of cooling down the chip rapidly.
Abstract:
An electronic device with a slideable lens cover is provided. The electronic device includes a casing, a bracket and a lens cover. The casing has an opening. The bracket is mounted inside the casing and faces the opening. There is a track existing between the bracket and the casing. The lens cover is disposed between the casing and the bracket. The lens cover has a plurality of slideable components movably disposed on the track.
Abstract:
An electronic braking and energy recycling system associated with a direct current (DC) brushless motor, characterized in that when an electronic braking task is launched, a phase voltage occurred in an inverse mode is applied onto a motor coil corresponding thereto and a gate voltage signal with positive and negative cycles is used to control an upper-side and lower-side branches to switch as compared to each other in the system, so as to redirect a current flown through the motor back to a power source end. In this invention, a controllable inverse torsion is achieved, enabling an electrical machine to be braked smoothly and reliably when necessary. As such, a dynamic power of the motor can be recycled at a maximum rate and thus the purpose of energy recycling is achieved. In addition, no complex circuitry configuration owing to the multi-phase coils is required.
Abstract:
A durable golf tee construction to prevent the loss of or damage to golf tees, allowing golf players to play many rounds of golf using only one golf tee. The first tee of the duo-tee construction contains a wire connected to the base top and the separable ball seat, through a center hole in the middle ring portion, so that the whole structure becomes more durable and thus environmental friendly than other prior art disclosure's teaching.
Abstract:
A semiconductor process test structure comprises a gate electrode, a charge-trapping layer, and a diffusion region. The test structure is a capacitor-like structure in which the charge-trapping layer will trap charges during various processing steps. A charge pump current can be used to detect the charging effect during various processing steps.
Abstract:
A memory cell includes an N-type well, three P-type doped regions, a first stacked dielectric layer, a first gate, a second stacked dielectric layer, and a second gate. The three P-type doped regions are formed on the N-well. The first dielectric stack layer is formed on the N-type well and between the first doped region and the second doped region from among the three P-type doped regions. The first gate is formed on the first stacked dielectric layer. The second stacked dielectric layer is formed on the N-type well and between the second doped region and the third doped region from among the three P-type doped regions. The second gate is formed on the second stacked dielectric layer.
Abstract:
The invention relates to an ESD protection with ability to enhance trigger-on speed of a low voltage Triggered PNP (LVTPNP) unit for protecting internal circuits of an integrated circuit from attack of an ESD stress. The ESD protection unit incorporates either detection circuit or power clamp circuit to efficiently trigger on a trigger node as a heavily doped region of LVTPNP devices among an I/O pad, a VDD pin and a VSS pin. As soon as the trigger node of each LVTPNP device receives a trigger signal from either the ESD detection circuit or power clamp circuit, the threshold voltage of the LVTPNP devices are capable of being therefore reduced to enhance trigger-on speed of the LVTPNP devices that discharge ESD current.