Abstract:
The present disclosure relates to a multi-sensor indoor localization method and device. The method includes: an optical signal is received from a point light source using an optical sensor group having N optical sensors; the light intensity of the optical signal is obtained, the optical sensor group includes a polyhedron-shaped base where the normal vectors of each three faces are linearly independent, the N optical sensors are located on the faces of the base, and N≧6; the current heading is obtained by a magnetic sensor group; a current unit normal vector is obtained; a system of at least three equations is established; the system of equations is solved to obtain an approximate solution of minimum residual, the approximate solution is regarded as the coordinates of the optical sensor group.
Abstract:
Use of phosphorus-based material in preparation of medicament for treating tumors. The phosphorus-based material is selected from a material which is convertible to produce phosphate ions in an acidic environment, and the phosphorus-based material can be converted by tumor cells phagocytosis to produce a large number of phosphate ions to change the intraceullar environment and extracellular environment, thereby inhibiting proliferation of tumor cells and inducing death of tumor cells. This process has no significant effect on normal cell activities. By applying the phosphorus-based material to the preparation of a medicament for treating tumor in a manner as mentioned above, the amplification and metastasis of tumor cells can be effectively inhibited, thereby the metastasis of the tumor cells and recurrence of the tumor can be prevented more effectively, improving the therapeutic effect of the tumor. The phosphorus-based material has little effect on normal cells and tissues in the course of treatment.
Abstract:
The present application relates to image processing technical field, and provides a method for image reconstruction, an apparatus, a terminal device, and a storage medium. The method first extracts an initial feature map of an original image, then calculates an average value of each column pixel in the initial feature map, and constructs a target row vector and duplicates the target row vector in the column direction after convolution processing, to obtain a feature map. In addition, an average value of the element of each row of pixels in the initial feature map is calculated respectively, and a target column vector is constructed. It is duplicated in a row direction to obtain another feature map, and then the two feature maps are fused. Finally, two-dimensional convolution processing is performed on a fused feature map, and a reconstructed image is generated, thereby the long-distance dependencies of the image can be captured.
Abstract:
Provided is an acoustic microfluidic system for cell fusion, a preparation method therefor and use thereof, which relates to the technical field of cell fusion. The acoustic microfluidic system of the present invention comprises a signal generator, a power amplifier, a PDMS cavity, a micro-injection pump, a pipeline, an EP tube, a cell recovery container, and a bulk wave transducer/surface acoustic wave transducer. The side wall/bottom of the PDMS cavity is provided with identical microporous structures disposed in a staggered manner The system of the present invention has the advantages of extremely low heat production quantity, simple operation, high repeatability and strong stability, and is suitable for the fusion of homologous cells and non-homologous cells. The system is not only suitable for the fusion of two cells, but also for the fusion of a plurality of cells, and can be widely applied to various types of cells.
Abstract:
Provided are an orthopedic repair scaffold, a preparation method thereof and use thereof. The orthopedic repair scaffold is a three-dimensional porous scaffold. A material of the orthopedic repair scaffold comprises the following components in mass percentage: 80%-95% of a biodegradable polymer and 5%-20% of a biodegradable nanoparticle, where the biodegradable nanoparticle is a nanoparticle of manganese compound. The preparation method of the orthopedic repair scaffold comprises: preparing a homogeneous solution comprising a biodegradable polymer and a biodegradable nanoparticle according to the mass percentage; preparing the homogeneous solution through a curing molding process into a molded three-dimensional porous scaffold; and freeze-drying the molded three-dimensional porous scaffold to obtain the orthopedic repair scaffold. The orthopedic repair scaffold can better promote healing of a bone injury and has an excellent mechanical performance and a good medical imaging function.
Abstract:
Disclosed are information transmission method, apparatus, device and medium for medical imaging application. The method includes: an imaging device corresponding to an application authorization request is determined according to the received application authorization request, and an application permission profile of the imaging device is acquired; and a medical imaging application corresponding to the imaging device is determined according to the application permission profile of the imaging device, and medical imaging application information corresponding to the medical imaging application is transmitted to the imaging device.
Abstract:
A high-temperature-resistant insulating polymer composite is provided, including the following components in parts by mass: 3-12 parts of cyanate ester resin, 3-20 parts of epoxy resin, 5-15 parts of an inorganic filler, 0.1-2 parts of an epoxy resin curing agent, 0.0001-0.005 parts of a curing accelerant, and 0.1-2 parts of a dispersant. A glass transition temperature of the cured high-temperature-resistant insulating polymer composite is higher than 120° C.
Abstract:
A brain network and brain addictive connectivity computing method and device are disclosed. The method includes: obtaining real brain functional magnetic resonance (fMRI) images associated with different labels; generating first brain topologies associated with the different labels based on at least one training real brain fMRI image sample; generating a brain addiction standard feature map based on an additive real brain fMRI image; determining an initial weight value of each of the first brain topologies according to the brain addiction standard feature map; training an addictive brain network analysis model based on the first brain topologies associated with different labels and the initial weight value of each first brain topology; inputting at least one testing real brain fMRI image sample into addictive brain network analysis model to generate first weighted brain topologies.
Abstract:
A shimming method and device, an electronic device, and a storage medium are disclosed. The shimming method includes: obtaining object static magnetic field distribution information corresponding to a target object, the object static magnetic field distribution information including the static magnetic field distribution information of the target object under the action of a main magnet of a magnetic resonance system; determining a target static magnetic field based on the object static magnetic field distribution information and a preset shim coil magnetic field distribution model; and adjusting at least one shim coil parameter in the shim coil magnetic field distribution model until a magnetic field uniformity of the target static magnetic field satisfies a preset condition, and accordingly obtaining at least one target shim coil parameter.
Abstract:
The present invention provides a magnetic sorting microfluidic chip, including a substrate, a chip model material layer, a micro-channel unit and a magnetic sorting unit, where the chip model material layer is disposed on the substrate, and the micro-channel unit and the magnetic sorting unit are both disposed in the chip model material layer; the micro-channel unit includes a sorting channel and magnetic pole channels; the sorting channel is provided with a plurality of sorting channel inlets and a plurality of sorting channel outlets; and the magnetic sorting unit includes permanent magnets, high-permeability alloys, and magnetic pole arrays disposed in the magnetic pole channels, where the high-permeability alloys are configured to conduct magnetic fields of the permanent magnets to the magnetic pole arrays, so that the magnetic pole arrays generate magnetic fields having opposite polarities on left and right positions of the sorting channel.