Abstract:
The present invention facilitates an inter-mobile switching center (MSC) soft hand-off by creating a communication link between the MSCs through the base station controllers (BSCs). The routers in the BSCs are linked to form a virtual router. This faster link between the BSCs enables the same protocol to be used for intra-MSC soft hand-off used for inter-MSC soft hand-off.
Abstract:
The power control process switches between IS-95 forward power control and fast forward power control using either speed or hand-off status information from the mobile radiotelephone. If the received information indicates either a slower speed or the number of communication links is less than a predetermined number, the fast forward power control process is used. If the received information indicates either a fast speed or the number of links is greater than or equal to the predetermined number (the radiotelephone is in a hand-off situation), the forward power control process is used.
Abstract:
The User Equipment (UE) initiates initial access by transmitting an uplink reference signal on at least one UE beam. Each Base Station (BS) carries out a spatial search of detected uplink reference signals, estimates the Angle of Arrival (AoA) of the uplink reference signals, forms a dedicated downlink beam toward the UE at the estimated AoA, and sends an acknowledgement for the uplink reference signal on the dedicated downlink beam. The UE carries out a spatial search of the received acknowledgement, and identifies the UE beam angular pointing position, from which receives the acknowledgement with the highest signal quality, as the UE beam boresight toward the BS. The UE sends a connection setup request message to the BS on the identified UE beam boresight. The uplink reference signals and acknowledgements comprise a single preamble, effectively carrying one bit of information, or carry a small payload.
Abstract:
In a beamforming system, each User Equipment (UE) transmits an uplink probe. Each Base Station (BS) carries out a spatial search of the uplink probes, estimates an Angle of Arrival (AoA) of the uplink probe received from each UE, and estimates the uplink channel frequency response of the uplink probe received on an uplink dedicated beam formed toward the UE's AoA. The BS transmits a reference signal to each UE on a downlink dedicated beam formed toward the UE's AoA, from which the UE estimates the downlink frequency response. The UE forms channel impulse response matrices for the uplink and the downlink, using the estimated uplink and downlink channel frequency responses between each UE and the BS. The BS uses the channel impulse response matrices to form downlink and uplink dedicated beams that put boresight of the beams toward the AoA of one UE and put nulls toward the AoAs of the other UEs.
Abstract:
A terrestrial communications network for providing broadband internet access to aerial platforms is described. In some embodiments, the cell site sector communications equipment comprises of at least two radio modules and two antenna apertures, the cell site transmits data to an aerial platform on only one antenna aperture, but receives from the aerial platform on all antenna apertures. In some embodiments, the cell site communications equipment divides each of the N data packet streams destined to N aerial platforms into multiple data packet sub-streams and sends each data packet sub-stream of an aerial platform on a different antenna aperture using a different frequency channel or antenna polarization, forming N beams from each antenna aperture, one beam toward each aerial platform.
Abstract:
The present disclosure describes the system and methods for providing broadband internet access to homes and enterprises using a network of drones/UAVs. The drone communication system is composed of an antenna sub-system, a radio sub-system and a data switching sub-system. Drones form and point beams toward ground terminals in different areas in a space division multiple access scheme. Ground terminals are composed of an antenna sub-system and a radio sub-system. Ground terminals search for the drone from which they receive the strongest signals. Drone and ground terminals comprise of methods and systems to calibrate receive and transmit antenna elements. Drone radio sub-system keeps track of the drone's position and orientation changes and adjust drone's antenna beam accordingly to point to the same location on the ground as the drone moves. Depending on the changes in drone's position and orientation, the drone radio sub-system may switch the antenna aperture and/or the antenna fixture that is used to form a beam toward a specific ground terminal. Drones communicate with the terminals using a space and time division multiple access scheme.
Abstract:
An automated method of determining a location of an aerial platform is described. The method includes: transmitting, from the aerial platform, a first pilot signal; receiving, at a set of ground devices, the first pilot signal; determining a first set of values based on measurements associated with the first pilot signal; and calculating a position of the aerial platform based at least partly on the first set of values. An automated method adapted to determine a location of a ground device includes: transmitting, from the ground device, a first pilot signal; receiving, at each aerial platform in a set of aerial platforms, the first pilot signal; determining a first set of values based on measurements associated with the first pilot signal; and calculating a position of the ground device based at least partly on the first set of values. A system adapted to provide location information is described.
Abstract:
A method for real-time calibration of an air to ground two-way communication system. The method includes calibrating a ground base station antenna array according to forward link calibration coefficients received from an aircraft as part of a communication signaling protocol during operation of the air to ground two-way communication system. The method may also includes communicating between the ground base station antenna array and the aircraft over a narrow beam.
Abstract:
A position location system based on a wireless local area network such as an IEEE 802.11 network is described. The system determines position of mobile tags attached to assets or people. IEEE 802.11 enabled zone tags are installed to assist in positioning. The system aligns frame timing of zone tags to that of an associated basic service set (BSS). The system computes the frame timing offsets between adjacent BSSs, and utilizes the frame timing offsets in scheduling range measurements between zone tags and mobile tags. A set of zone tags which are in close proximity of a first zone tag and able to receive signals from the first zone tag is identified. Frame timing of all zone tags in a network are aligned.
Abstract:
A system for broadband access to airborne platforms is described. The system includes: a ground station with a number of antenna panels, each antenna panel having two polarizations; the ground station having multiple modems connected to the different antenna panels and a processor controlling the modems; and the aircraft equipment comprising of a modem attached to an antenna with two polarizations.