Abstract:
A liquid crystal display including an active device array substrate, an opposite substrate disposed above the active device array substrate and a liquid crystal layer disposed between the active device array substrate and the opposite substrate is provided. The active device array substrate has a plurality of signal lines, a plurality of active devices electrically connected with corresponding signal lines, a plurality of pixel electrodes electrically connected with corresponding active devices, and an auxiliary electrode. The auxiliary electrode is disposed between the pixel electrodes. Besides, the opposite substrate has a common electrode. The voltage difference applied between the common electrode and the pixel electrode is smaller than that applied between the auxiliary electrode and the pixel electrode. Additionally, a driving method for the above-mentioned liquid crystal display is also provided.
Abstract:
A pixel device of a transflective-type LCD comprises an upper panel, a lower panel, a liquid crystal layer, and a liquid crystal film. The lower panel is assembled beneath the upper panel, and an upper surface of the lower panel is divided into a reflective region and a naked transmission region. The liquid crystal layer is interposed between the upper panel and the lower panel. The liquid crystal film is positioned above the liquid crystal layer to compensate possible retardation resulted from the liquid crystal layer.
Abstract:
In a transflective liquid crystal display having a transmission area and the reflection area, the transmissive electrode is connected to a switching element to control the liquid crystal layer in the transmission area, and the reflective electrode is connected to the switching element via a separate capacitor to control the liquid crystal layer in the reflection area. The separate capacitor is used to shift the reflectance in the reflection area toward a higher voltage end in order to avoid the reflectance inversion problem. In addition, an adjustment capacitor is connected between the reflective electrode and a different common line. The adjustment capacitor is used to reduce or eliminate the discrepancy between the gamma curve associated with the transmittance and the gamma curve associated with the reflectance.
Abstract:
In a process of forming a LCD cell structure, an electrode layer provided with a recessed portion is formed over a substrate, and a transparent dielectric layer is formed to cover the recessed portion of the pixel electrode layer. The recessed portion of the electrode layer acts to distort an electric field created in the liquid crystal of the LCD system for image displaying, while the transparent dielectric layer eliminates the boundary conditions created by the concavity of the recessed portion of the electrode layer.
Abstract:
A pixel structure, which may be used in a liquid crystal display panel, includes a plurality of display pixel units and a plurality of control devices. Each of the display pixel units includes a first sub-pixel adapted to provide a first color, a second sub-pixel adapted to provide a second color, a third sub-pixel adapted to provide a third color, a first white sub-pixel, a second white sub-pixel, and a third white sub-pixel. Each of the control devices is employed for respectively controlling each of the sub-pixels. The liquid crystal display panel is normally white when the first sub-pixel, the second sub-pixel, the third sub-pixel, the first white sub-pixel, the second white sub-pixel, and the third white sub-pixel are not driven by the control devices.
Abstract:
A display device having slim border-area architecture is disclosed. The display device includes a substrate, a plurality of data lines, a plurality of gate lines, a plurality of auxiliary gate lines and a driving module. The substrate includes a display area and a border area. The data lines, the gate lines and the auxiliary gate lines are disposed in the display area. The driving module is disposed in the border area. The gate lines are crossed with the data lines perpendicularly. The auxiliary gate lines are parallel with the data lines. Each auxiliary gate line is electrically connected to one corresponding gate line. The data and auxiliary gate lines are electrically connected to the driving module based on an interlace arrangement. Further disclosed is a driving method for delivering gate signals provided by the driving module to the gate lines via the auxiliary gate lines.
Abstract:
An MVA LCD device includes a first alignment region, a second alignment region, a third alignment region, and a fourth alignment region. The liquid crystal molecules disposed in the first alignment region have a first aligning direction, and the azimuth angle of the first aligning direction is substantially between 70 and 110 degrees. The liquid crystal molecules disposed in the second alignment region have a second aligning direction, and the azimuth angle of the second aligning direction is substantially between 160 and 200 degrees. The liquid crystal molecules disposed in the third alignment region have a third aligning direction, and the azimuth angle of the third aligning direction is substantially between 250 and 290 degrees. The liquid crystal molecules disposed in the fourth alignment region have a fourth aligning direction, and the azimuth angle of the fourth aligning direction is substantially between −20 and 20 degrees.
Abstract:
A tri-gate pixel structure includes three sub-pixel regions, three gate lines, a data line, three thin film transistors (TFTs), three pixel electrodes, and a common line. The gate lines are disposed along a first direction, and the data line is disposed along a second direction. The TFTs are disposed in the sub-pixel regions respectively, wherein each TFT has a gate electrode electrically connected to a corresponding gate line, a source electrode electrically connected to the data line, and a drain electrode. The three pixel electrodes are disposed in the three sub-pixel regions respectively, and each pixel electrode is electrically connected to the drain electrode of one TFT respectively. The common line crosses the gate lines and partially overlaps the three gate lines, and the common line and the three pixel electrodes are partially overlapped to respectively form three storage capacitors.
Abstract:
The present invention relates to a shift register having a plurality of stages electrically coupled to each other in series. Each stage includes a first and second TFT transistor. The first TFT transistor has a get electrically coupled to the output of the immediately prior stage, a drain electrically coupled to the boost point of the stage, and a source configured to receive one of the first and second control signals. The second TFT transistor has a get electrically coupled to the output of the immediately next stage, a drain and a source electrically coupled the drain and the source of the first transistor, respectively.
Abstract:
A display device including a display module, a light source module, a turning optical film, a first compensation film and a second compensation film is provided. The display module includes a first substrate, a second substrate and a display medium. The light source module generates directional light. The display module is disposed above the light source module. The second substrate is disposed opposite to the first substrate. The display medium is disposed between the first substrate and the second substrate and is optically isotropic. The turning optical film is disposed on the second substrate of the display module. The directional light enters the turning optical film and then exits the turning optical film to form an output light. The first compensation film is disposed on the first outer surface of the first substrate. The second compensation film is disposed between the second substrate and the turning optical film.