Methods of lithiating electroactive materials

    公开(公告)号:US11342545B2

    公开(公告)日:2022-05-24

    申请号:US16706331

    申请日:2019-12-06

    Abstract: The present disclosure relates to electroactive materials for use in electrodes of lithium-ion electrochemical cells and methods of making the same, for example, methods for lithiating electroactive materials. A method of lithiating an electroactive material may include dispersing an electroactive material precursor within a room-temperature electrolyte that includes a lithium-based salt and contacting the electrolyte mixture and a lithium source so as to cause the lithium source to ionize and form lithium ions. The lithium ions may react with the electroactive material precursor to form a fully lithiated electroactive material (e.g., greater than 70% of total lithiation). The method further includes, in certain aspects, electrochemically discharging the fully lithiated electroactive material to form a lithiated electroactive material having an optimized lithiation state (e.g., less than or equal to about 40% of a first lithiation state of the fully lithiated electroactive material).

    PRE-LITHIATION OF BATTERY ELECTRODE MATERIAL

    公开(公告)号:US20210408517A1

    公开(公告)日:2021-12-30

    申请号:US16912150

    申请日:2020-06-25

    Abstract: A method for making a pre-lithiated electrode for a lithium ion battery cell, a method for making a battery with a pre-lithiated electrode, and an electric vehicle with a pre-lithiated electrode are provided. An exemplary method for making a pre-lithiated electrode for a lithium ion battery cell includes electrochemically connecting a magnesium-lithium alloy to the electrode. Further, the method includes pre-lithiating the electrode by transferring lithium ions from the magnesium-lithium alloy to the electrode. Also, the method includes electrochemically disconnecting the magnesium-lithium alloy from the electrode.

    THERMAL-ASSISTED MULTIPLE SHEET ROLL FORMING
    127.
    发明申请

    公开(公告)号:US20200156134A1

    公开(公告)日:2020-05-21

    申请号:US16196015

    申请日:2018-11-20

    Abstract: A thermal-assisted method deforms a sheet metal assembly having constrained ends. A focus bending area located between the constrained ends is heated. The focus bending area is bent while the sheet metal assembly is within an elevated bending temperature range. A sheet metal assembly may be formed by this method, which includes an outer metal sheet and an inner metal sheet fixed together to form constrained ends. The sheet metal assembly has a bend formed therein between the first and second constrained ends, wherein each metal sheet is bent at the bend with a maximum gap between the inner and outer metal sheets at the bend. The maximum gap is no greater than five times the thickness of one of the inner and outer metal sheets, and the bend has a radius less than three times the thickness of one of the inner and outer sheets.

    Turbocharger shafts with integrated cooling fans and turbochargers comprising the same

    公开(公告)号:US10465603B1

    公开(公告)日:2019-11-05

    申请号:US16052029

    申请日:2018-08-01

    Abstract: Turbochargers include a compressor comprising a compressor body extending from a compressor back face and a plurality of blades extending from the compressor body, a turbine comprising a turbine body extending from a turbine back face and a plurality of blades extending from the turbine body, and a shaft coupled at a first end to the compressor back face and at a second end to the turbine back face. The shaft includes an internal passage extending from the first end towards the second end in fluid communication with the compressor blades and one or more fans disposed within the internal passage and configured to draw air toward the second end of the shaft. The internal passage of the shaft is in fluid communication with the compressor blades via one or more bleed air passages, which can be biased towards an outer diameter of the compressor body.

    Method for fabricating non-planar magnet

    公开(公告)号:US10460871B2

    公开(公告)日:2019-10-29

    申请号:US15290660

    申请日:2016-10-11

    Abstract: A method for fabricating a non-planar magnet includes extruding a precursor material including neodymium iron boron crystalline grains into an original anisotropic neodymium iron boron permanent magnet having an original shape, wherein the original anisotropic neodymium iron boron permanent magnet has at least about 90 percent neodymium iron boron magnetic material by volume. The original anisotropic neodymium iron boron permanent magnet is heated to a deformation temperature. The original anisotropic neodymium iron boron permanent magnet is deformed into a reshaped anisotropic neodymium iron boron permanent magnet having a second shape substantially different from the original shape using heated tooling to apply a deformation load to the original anisotropic neodymium iron boron permanent magnet. The original anisotropic neodymium iron boron permanent magnet and the reshaped anisotropic neodymium iron boron permanent magnet each have respective magnetic moments substantially aligned with a respective local surface normal corresponding to the respective magnetic moment.

    Rapidly solidified high-temperature aluminum iron silicon alloys

    公开(公告)号:US10435773B2

    公开(公告)日:2019-10-08

    申请号:US16375099

    申请日:2019-04-04

    Abstract: High-strength, lightweight alloy components, such as automotive components, capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided, along with methods of making such high-strength, lightweight alloy components. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si.

Patent Agency Ranking