Abstract:
The present invention provides a data transmission method and system, where the method is used in a system architecture adopting a virtual heterogeneous network, where a macro base station covering a macro-cell and a pico base station covering a pico-cell share the same station address. The method includes the following step: sending control information and data information to user terminals in the macro-cell and the pico-cell according to location information of the user terminals so that the user terminals obtain the data information according to the control information. The system includes a sending module. The present invention implements joint scheduling of resources between a macro base station and a pico base station, reduces interference between cells, and maximally improves an overall data rate.
Abstract:
Embodiments of the present invention provide a method and device for demodulating data. The method includes: determining a number of reliable bits of each path of data in M paths of data and a modulation manner used to demodulate the reliable bits of each path of data, where M is a positive integer; demodulating the reliable bits of each path of data according to the modulation manner used to demodulate the reliable bits of each path of data; and demodulating residual bits in each path of data except the reliable bits according to a maximal likelihood ML algorithm. Compared with the prior art, it is unnecessary to demodulate all bits of each path of data according to the ML algorithm, thereby lowering the complexity of demodulation by using the ML algorithm.
Abstract:
The present invention provides a method and an apparatus for handling full-duplex interference. One method includes: obtaining an interference degree that is caused when a site device performs full-duplex transmission with at least two UEs; and determining, according to the interference degree, a UE allowed to transmit uplink and downlink signals on the same time and frequency resource among the at least two UEs. In embodiments of the present invention, a UE allowed to transmit uplink and downlink signals on the same time and frequency resource may be classified according to an interference degree that is caused when a site device performs full-duplex transmission with at least two UEs, thereby preventing the interference problem in the scenario of point-to-multipoint full-duplex communication as much as possible.
Abstract:
A microcell creating method based on macrocell network coverage and a base station are disclosed. The method may include setting a beam width and a beam direction of a highly directional antenna according to location information of a hotspot area, and generating microcell coverage or the hotspot area by using beams generated by the highly directional antenna. Embodiments of the present invention may keep the micro base station location unchanged when the hotspot area changes, and may implement microcell coverage for the hotspot area simply by adjusting the beam width and the beam direction of the highly directional antenna.
Abstract:
Embodiments of the present invention disclose a central baseband processing unit (CBPU), including a switching module and at least one base band unit (BBU) and further including a resource mapping module. The resource mapping module is configured to perform resource block demapping for uplink frequency domain baseband signals obtained through Fast Fourier Transform (FFT) and demultiplex signals of each user from corresponding subcarriers. The switching module is configured to transmit the signals of each user to the corresponding BBU, and the BBU is configured to process the received user signals. Correspondingly, embodiments of the present invention also disclose a remote RF unit (RRU) and a frequency domain transmission method. The technical solution provided in the present invention can improve transmission performance of a C-RAN system.
Abstract:
A method for establishing communication between a wireless access network and a terminal includes determining a selection strategy of a wireless access network for establishing communication with a terminal; selecting the wireless access network for establishing communication with the terminal according to the determined selection strategy; and establishing communication between the terminal and the wireless access network according to the signal types supported by the wireless access network and the terminal.
Abstract:
A method for transmitting baseband signals is disclosed. The method includes: when downlink traffic volume in an area among areas covered by multiple remote radio frequency units RRUs is lower than a preset threshold, generating or receiving a group of downlink baseband signals, where the group of downlink baseband signals corresponds to all RRUs in the area; and transmitting the group of downlink baseband signals to each RRU in the area, so that each RRU generates downlink radio frequency signals based on the downlink baseband signals and sends the downlink radio frequency signals. Accordingly, the embodiments of the present invention further disclose a method for transmitting baseband signals and a BBU. With the technical solutions, the bandwidth for transmitting baseband signals is greatly lowered, implementation is easy, and complexity of a system is reduced.
Abstract:
A method, system, and device for radio network aggregation are applied in communication technologies. The method for radio network aggregation transmission includes: obtaining location information of a user equipment on at least two radio networks; obtaining, according to the location information, network load information of each radio network where the user equipment is currently located; determining, according to the network load information and a preset policy, a way in which data streams of the user equipment are transmitted by using the at least two radio access technologies; and transmitting the data streams of the user equipment in the determined way. Thereby, radio network aggregation is implemented.