Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of multi-user (MU) wireless communication. For example, a wireless station may be configured to generate a MU Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU) including a header field and a plurality of Media Access Control (MAC) Protocol Data Units (MPDUs) to a respective plurality of users, the header field including an indication of a plurality of lengths of respective ones of the plurality of MPDUs, one or more MPDUs of the plurality of MPDUs being followed by one or more respective PHY padding portions extending to an end of a longest MPDU of the plurality of MPDUs; and process transmission of the MU PPDU to the plurality of users over a wireless communication band.
Abstract:
Methods and apparatus to operating multiple single-input single-output beamform links. An example method includes determining strengths of a first wireless link between a first transmission sector and a first receiver sector and a second wireless link between a second transmission sector and a second receiver sector, determining whether the first and second wireless links is busy or idle, selecting an idle wireless link of the plurality of wireless links based on the strengths of the first and second wireless links that are idle, and establishing a transmission connection with the selected idle wireless link.
Abstract:
Methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to initiate and protect multi-user multiple input multiple output (MU-MIMO) transmissions in communication networks are disclosed. Example MU-MIMO communication methods disclosed herein include preparing a MU-MIMO setup frame specifying duration information for a subsequent MU-MIMO frame to be transmitted and a group of stations to receive the subsequent MU-MIMO frame. Disclosed example MU-MIMO communication methods also include transmitting the MU-MIMO setup frame, and after the transmitting of the MU-MIMO setup frame, transmitting the MU-MIMO frame.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wireless transmission according to a Physical Layer scheme. For example, a wireless station may be configured to generate a frame including a header and a data portion, the header including a modulation and coding scheme (MCS) value of an Orthogonal Frequency Divisional Multiplexing (OFDM) Physical layer (PHY) scheme or a Low Power Single Carrier (LPSC) PHY scheme; modulate and encode the header according to a Single Carrier (SC) PHY scheme; modulate and encode the data portion according to the OFDM PHY scheme or the LPSC PHY scheme; and process transmission of the frame.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wireless transmission according to a Physical Layer scheme. For example, a wireless station may be configured to generate a frame including a header and a data portion, the header including a modulation and coding scheme (MCS) value of an Orthogonal Frequency Divisional Multiplexing (OFDM) Physical layer (PHY) scheme or a Low Power Single Carrier (LPSC) PHY scheme; modulate and encode the header according to a Single Carrier (SC) PHY scheme; modulate and encode the data portion according to the OFDM PHY scheme or the LPSC PHY scheme; and process transmission of the frame.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Time of Flight (ToF) measurement. For example, a first wireless device may include a radio to communicate a discovery frame with a second wireless device, the discovery frame including an initiator indication to indicate whether a sender of the discovery frame is to be an initiator or a responder of a Time of Flight (ToF) measurement procedure, and availability information to indicate a wireless channel and one or more time intervals; and a controller to perform the ToF measurement procedure with the second wireless device over the wireless channel during the one or more time intervals, the controller be either the initiator or responder of the ToF measurement according to the initiator indication.
Abstract:
The disclosure relates to a method and apparatus for leveraging Bluetooth (BT) or Bluetooth low energy (BLE) technologies to conserve energy in multi-mode devices. In one embodiment, the disclosure relates to synchronizing a first wireless platform with a second wireless platform by exchanging Wi-Fi synchronization information through BT packets. Each of the first and the second wireless platforms may have integrated Wi-Fi (or other communication modalities) with a BT radio. In one embodiment of the disclosure, the Wi-Fi communication modes are kept at sleep mode while the BT modalities exchange synchronization information.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beamforming. For example, a responder station may process a received Beam Refinement Protocol (BRP) request including a beam tracking request from an initiator station; and select whether or not to transmit a BRP response including beam tracking feedback, in response to the BRP request, based on a comparison between a time period and a BRP tracking time limit, the time period being based on a timing of the BRP request and a timing of the BRP response.
Abstract:
For example, an EDMG STA may generate an LDPC coded bit stream for a user based on data bits for the user in an EDMG PPDU, the LDPC coded bit stream for the user including a concatenation of a plurality of LDPC codewords, a count of the plurality of LDPC codewords is based at least on a codeword length for the user and on a code rate for the user; generate encoded and padded bits for the user by concatenating the LDPC coded bit stream with a plurality of coded pad zero bits, a count of the coded pad zero bits is based at least on a count of one or more spatial streams for the user and on the count of the plurality of LDPC codewords for the user; and distribute the encoded and padded bits for the user to the one or more spatial streams for the user.
Abstract:
Techniques to enable dynamic bandwidth management at the physical layer level while maintaining backwards compatibility in wireless systems is provided. Furthermore, techniques for reducing the occurrence of exposed nodes are provided. A transmitter may transmit a frame including an indication that a PHY layer sub-header defining a bandwidth associated with a channel is present. Furthermore, the transmitter may transmit a third frame after receiving a second frame from a receiver to indicate to legacy stations that the TXOP was successful.