Abstract:
A method includes: capturing or receiving at least one image of one or more identity documents (IDs) using a mobile device; determining identifying information from one or more of the IDs; building an ID profile based on the identifying information; storing the ID profile to a memory of the mobile device; invoking a workflow configured to facilitate a business transaction; detecting a predetermined stimulus in the workflow, the stimulus relating to the business transaction; providing at least a portion of the ID profile to the workflow in response to detecting the predetermined stimulus; and driving at least a portion of the workflow using the provided portion of the ID profile. Related systems and computer program products are also disclosed.
Abstract:
A method includes receiving user input defining a workflow comprising one or more activities and one or more rules; receiving user input defining a user interface (UI) configured to facilitate a user performing the workflow at least in part using a processor of a mobile device; and generating a mobile software application based on the workflow and the UI. In another embodiment, a method includes: instantiating a mobile application on a mobile device; launching a workflow within the mobile application, the workflow comprising one or more activities and one or more rules; rendering one or more user interfaces based at least in part on the workflow; displaying at least one of the user interfaces on a display of the mobile device; receiving user input via at least one of the user interfaces; and modifying the workflow based at least partially on user input. Systems and computer program products are also disclosed.
Abstract:
A method includes storing raw or normalized video data in a computer accessible storage medium; analyzing portions of the video data with a first analytic engine to: determine whether the raw video data is within a first set of parameters; and generate with the first analytic engine a first set of processor settings; processing the raw or normalized video data with the first set of processor settings; and analyzing portions of the processed data with a second analytic engine to determine whether the processed data is within a second set of parameters; generating with the second analytic engine a second set of processor settings to reprocess the raw or normalized video data, sending the second set of processor settings to the first analytic engine; and reprocessing the raw or normalized video data with the first analytic engine using the second set of processor settings.
Abstract:
Systems, methods, and computer program products for smart, automated capture of textual information using optical sensors of a mobile device are disclosed. The textual information is provided to a mobile application or workflow without requiring the user to manually enter or transfer the data without requiring user intervention such as a copy/paste operation. The capture and provision context-aware, and can normalize or validate the captured textual information prior to entry in the workflow or mobile application. Other information necessary by the workflow and available to the mobile device optical sensors may also be captured and provided, in a single automatic process. As a result, the overall process of capturing information from optical input using a mobile device is significantly simplified and improved in terms of accuracy of data transfer/entry, speed and efficiency of workflows, and user experience.
Abstract:
A method includes capturing plural frames of video data using a mobile device. The frames are analyzed to determine whether any depict an object exhibiting one or more defining characteristics, and if so, whether those frame(s) depicting the object also satisfy one or more predetermined quality control criteria. If one or more of the frames depict the object and also satisfy the one or more predetermined quality control criteria, the method further includes automatically capturing an image of the object. Exemplary defining characteristics are specified for various types of object, particularly objects comprising documents. Related systems and computer program products are also disclosed. The presently disclosed techniques and systems represent translational developments across the fields of image processing and business process management. Improved analytical techniques enable processing of image captured using cameras rather than traditional scanner technology, and facilitate distribution, tracking and analysis of documents and information throughout business processes.
Abstract:
A method includes storing raw or normalized video data in a computer accessible storage medium; analyzing portions of the video data with a first analytic engine to: determine whether the raw video data is within a first set of parameters; and generate with the first analytic engine a first set of processor settings; processing the raw or normalized video data with the first set of processor settings; and analyzing portions of the processed data with a second analytic engine to determine whether the processed data is within a second set of parameters; generating with the second analytic engine a second set of processor settings to reprocess the raw or normalized video data, sending the second set of processor settings to the first analytic engine; and reprocessing the raw or normalized video data with the first analytic engine using the second set of processor settings.
Abstract:
A method includes invoking an image capture interface via a mobile device; and analyzing video data captured via the capture interface. The analysis includes determining whether an object exhibiting one or more defining characteristics is depicted within the viewfinder; and if so, whether that object satisfies one or more predetermined quality control criteria. The method further includes displaying an indication of success or failure to satisfy the predetermined control criteria on the mobile device display. Where the object depicted within the viewfinder satisfies the one or more predetermined quality control criteria, the method also includes: displaying an indication that the object depicted in the viewfinder exhibits the one or more defining characteristics; automatically capturing an image of the object; and/or automatically storing to memory one or more of the frames in which the object is depicted in the viewfinder. Systems and computer program products are also disclosed.
Abstract:
A method includes invoking an image capture interface via a mobile device; and analyzing video data captured via the capture interface. The analysis includes determining whether an object exhibiting one or more defining characteristics is depicted within the viewfinder; and if so, whether that object satisfies one or more predetermined quality control criteria. The method further includes displaying an indication of success or failure to satisfy the predetermined control criteria on the mobile device display. Where the object depicted within the viewfinder satisfies the one or more predetermined quality control criteria, the method also includes: displaying an indication that the object depicted in the viewfinder exhibits the one or more defining characteristics; automatically capturing an image of the object; and/or automatically storing to memory one or more of the frames in which the object is depicted in the viewfinder. Systems and computer program products are also disclosed.
Abstract:
A method according to one embodiment includes performing optical character recognition (OCR) on an image of a first document; and at least one of: correcting OCR errors in the first document using at least one of textual information from a complementary document and predefined business rules; normalizing data from the complementary document using at least one of textual information from the first document and the predefined business rules; and normalizing data from the first document using at least one of textual information from the complementary document and the predefined business rules. Additional systems, methods and computer program products are also presented.
Abstract:
A method is provided for organizing data sets. In use, an automatic decision system is created or updated for determining whether data elements fit a predefined organization or not, where the decision system is based on a set of preorganized data elements. A plurality of data elements is organized using the decision system. At least one organized data element is selected for output to a user based on a score or confidence from the decision system for the at least one organized data element. Additionally, at least a portion of the at least one organized data element is output to the user. A response is received from the user comprising at least one of a confirmation, modification, and a negation of the organization of the at least: one organized data element. The automatic decision system is recreated or updated based on the user response. Other embodiments are also presented.