Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention provides a method and a device for a terminal transmitting/receiving a signal while executing random access in a communication system, and provides a method and a device for configuring the size of an RBG and a PRG.
Abstract:
The present invention relates to a communication technique, which is a convergence of IoT technology and 5G communication system for supporting higher data transmission rate beyond 4G system, and a system for same. The present invention can be applied to smart services (e.g. smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security- and safety-related services and the like) on the basis of 5G communication technology and IoT-related technology. The present invention provides a method for detecting a downlink control signal when a delay time reduction mode terminal is set to a delay reduction mode.
Abstract:
A communication method for a channel access in a wireless communication system and an apparatus therefor are provided. The communication method includes an evolved NodeB (eNB) that transmits data to a user equipment (UE) through a licensed band, and determines whether an unlicensed band channel is in an idle state during a first channel sensing duration. If the unlicensed band channel is in the idle state, the eNB transmits data to the UE through an unlicensed band during a first channel occupying duration, a second channel sensing duration, and a second channel occupying duration. In the method, a sum of the first channel occupying duration, the second channel sensing duration, and the second channel occupying duration is equal to or less than a certain time.
Abstract:
Various communication techniques and related systems for a fusion between a 5th generation (5G) communication system and Internet of Things (IoT) technology are provided. A user equipment (UE) is required to select a dedicated core network so as to receive a suitable service. In a method for transmitting and receiving a signal, an enhanced Node B (eNB) of a mobile communication system transmits a first request message to a first mobile management entity (MME), receives a reroute command message based on the first request message from the first MME, and transmits a second message to a second MME based on the reroute command message. Herein, the reroute command message contains the first request message, at least one MME identifier, and a UE identifier.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A scheduling method by a base station in a wireless communication system, the method comprising receiving a message including capability information from a first terminal and a second terminal, setting a first secondary cell having a first frame structure to the first terminal, and setting a second secondary cell having a second frame structure to the second terminal, based on the capability information and performing scheduling for the first secondary cell and second secondary cell, wherein in the second frame structure, all subframes are at least one of a downlink subframe, an uplink subframe, and an empty subframe.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). A method of a base station is provided. The method includes transmitting configuration information on a first bandwidth part (BWP) and a second BWP to a terminal, generating first downlink control information (DCI) for the second BWP such that a size of first DCI for the second BWP corresponds to a size of second DCI for the first BWP, and transmitting the first DCI for the second BWP on a control region of the first BWP.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology. The method of a terminal in a wireless communication system are provided. The method includes receiving information, which is related to a first transmission time and a second transmission time of an uplink signal of a terminal, from a base station, when the uplink signal of the terminal is configured in an unlicensed band, performing a channel access in the unlicensed band, and when the unlicensed band is not in an idle state based on a channel access result before the first transmission time, performing a channel access until the second transmission time.
Abstract:
A communication method and system are provided for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of things (IoT). The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A wireless communication system, and more particularly, a method and device for determining uplink signal transmission timing is provided.
Abstract:
A polymer includes a first repeating unit and a second repeating unit forming a main chain, the first repeating unit including at least one first conjugated system, and the second repeating unit including at least one second conjugated system and a multiple hydrogen bonding moiety represented by Chemical Formula 1.
Abstract:
A method for transmitting and receiving channel state information at a terminal of a mobile communication system according to an embodiment of the preset specification comprises the steps of: determining at least one of first precoding information and first rank information corresponding to a first dimension; receiving, from a base station, a reference signal corresponding to a second dimension; determining at least one of second precoding information and second rank information corresponding to the second dimension, on the basis of the reference signal; and transmitting, to the base station, channel state information which has been determined on the basis of at least one of the first precoding information, the first rank information, the second precoding information and the second rank information. According to an embodiment of the present specification, it is possible to correctly transmit and receive pre-coding information and channel state information at a terminal and a base station including a plurality of antennas, and to reduce an overhead occurring at the time of transmission and reception.