Abstract:
The invention comprises a charged particle beam, rapid patient positioning system including steps of: positioning a patient relative to a table in a substantially vertical orientation, optionally constraining motion of the patient with one or more constraints, transitioning the table through a semi-vertical orientation, such as with a robot arm, and orientating the patient and table in a substantially horizontal orientation, such as in a position for tumor therapy. Preferably, the robot arm is in common with an arm used to move the patient in traditional proton therapy. Optionally, the robot arm is used to re-orientate the patient into a substantially vertical orientation at the conclusion of a charged particle therapy session.
Abstract:
The invention relates generally to treatment of solid cancers. More particularly, the invention relates to a multi-field imaging and/or a multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration via use of feedback sensors used to monitor and/or control patient respiration. Preferably, the multi-field imaging, such as X-ray imaging, and the charged particle therapy are performed on a patient in a partially immobilized and repositionable position. X-ray and/or proton delivery is timed to patient respiration via control of charged particle beam injection, acceleration, extraction, and/or targeting methods and apparatus.
Abstract:
The invention comprises a flattened magnet coil system that reduces space between a first magnet turning section and a second magnet turning section in a synchrotron accelerator, which reduces or eliminates need for one or more quadrupole focusing elements in the accelerator. Optionally, a coil, in the flattened magnetic coil system, is wrapped about a central metal member between yoke members of a magnet. The coil has a first width and a first thickness along the length of the magnet and a second width and a second thickness along the end of the magnet where the first width is larger than the second width and the second thickness is larger than the first thickness allowing a smaller distance between the first magnet turning section and the second magnet turning section while maintaining current flow in the coil.
Abstract:
The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.
Abstract:
The invention comprises an X-ray tomography method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. In various embodiments, 3-D images are generated from a series of 2-D X-rays images; the X-ray source and detector are stationary while the patient rotates; the 2-D X-ray images are generated using an X-ray source proximate a charged particle beam in a charged particle cancer therapy system; and the X-ray tomography system uses an electron source having a geometry that enhances an electron source lifetime, where the electron source is used in generation of X-rays. The X-ray tomography system is optionally used in conjunction with systems used to both move and constrain movement of the patient, such as semi-vertical, sitting, or laying positioning systems. The X-ray images are optionally used in control of a charged particle cancer therapy system.
Abstract:
The invention relates to a method and apparatus for treatment of solid cancer. More particularly, the invention comprises a multi-axis and/or multi-field raster beam charged particle cancer therapy system. The system independently controls patient translation position, patient rotation position, two-dimensional beam trajectory, delivered beam energy, delivered beam intensity, beam movement velocity, timing of charged particle delivery, and/or distribution of radiation striking healthy tissue. The system operates in conjunction with a negative ion beam source, synchrotron, patient positioning, imaging, and/or targeting method and apparatus to deliver an effective and uniform dose of radiation to a tumor while distributing radiation striking healthy tissue.
Abstract:
The invention relates to treatment of solid cancers and more particularly to a method and apparatus correlating proton beam intensity with proton delivery efficiency, optionally in a raster beam scanning system. The system induces betatron oscillation on the proton beam causing the beam to traverse an extraction material resulting in slowed protons and a feedback current proportional to the proton flux. A controller receives the desired intensity from an irradiation plan and the feedback current and adjusts the radio-frequency field in the radio-frequency cavity system to yield an intensity of the proton beam that matches the desired intensity from the irradiation plan. Preferably, the intensity of the proton beam correlates with radiation delivery efficiency. The system preferably operates in conjunction with a multi-field charged particle cancer therapy system, with charged particle beam injection, particle beam acceleration, multi-axis charged particle beam control, and/or targeting methods and apparatus.
Abstract:
The invention comprises a radio-frequency accelerator method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. An RF synthesizer provides a low voltage RF signal, that is synchronized to the period of circulation of protons in the proton beam path, to a set of integrated microcircuits, loops, and coils where the coils circumferentially enclose the proton beam path in a synchrotron. The integrated components combine to provide an accelerating voltage to the protons in the proton beam path in a size compressed and price reduced format. The integrated RF-amplifier microcircuit/accelerating coil system is operable from about 1 MHz, for a low energy proton beam, to about 15 MHz, for a high energy proton beam.
Abstract:
The system uses an X-ray imaging system having an elongated lifetime. Further, the system uses an X-ray beam that lies in substantially the same path as a charged particle beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source located proximate to the charged particle beam path. By generating the X-rays near the charged particle beam path, an X-ray path running collinear, in parallel with, and/or substantially in contact with the charged particle beam path is created. The system then collects X-ray images of localized body tissue region about a cancerous tumor. Since, the X-ray path is essentially the charged particle beam path, the generated image is usable for precisely target the tumor with a charged particle beam.
Abstract:
The invention comprises a proton beam positioning method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The proton beam verification system allows for monitoring of the actual proton beam position in real-time without destruction of the proton beam. The system includes a coating or thin layer substantially in contact with a foil covering the end of an exit nozzle or is a layer located after the x- and y-axis proton beam scanning controllers and before the patient. The coating yields a measurable spectroscopic response, spatially viewable by the detector, as a result of transmission by the proton beam. The proton beam position is monitored by the detector and compared to the calibration and/or treatment plan to verify accurate proton delivery to the tumor and/or as a proton beam shutoff safety indicator.