Abstract:
The format of telecined video may be determined including a bottom field first cadence. In addition, video using 2:3:3:2 top field first can be identified. Moreover, mixed cadence videos can also be detected. In some embodiments, mixed cadence videos may be detected by calculating variances of different areas within a frame.
Abstract:
In a scalable video codec, an adaptive Wiener filter with offset aims to minimize the differences between two input pictures or picture regions, and the filter coefficients need to be transmitted to decoder site.
Abstract:
An adaptive Wiener filter may be applied to improve coding efficiency because of information lost during quantization of the video encoding process. The Wiener filter may be selectively applied globally to an entire picture or locally to portions of the picture. Histogram segmentation may be used to select pixels for Wiener filtering in some embodiments. The Wiener filter may be adaptively applied to histogram bins, improving coding efficiency in some cases.
Abstract:
A video encoder may use an adaptive Wiener filter inside the core video encoding loop to improve coding efficiency. In one embodiment, the Wiener filter may be on the input to a motion estimation unit and, in another embodiment, it may be on the output of a motion compensation unit. The taps for the Wiener filter may be determined based on characteristics of at least a region of pixel intensities within a picture. Thus, the filtering may be adaptive in that it varies based on the type of video being processed.
Abstract:
Systems, apparatus and methods are described including determining a prediction residual for a channel of video data; and determining, using the first channel's prediction residual, a prediction residual for a second channel of the video data. Further, a prediction residual for a third channel of the video data may be determined using the second channel's prediction residual.
Abstract:
Methods and systems to manipulate color processing parameters to allow the detection of an arbitrary color of interest. Such reconfigurations may enable general point-of-interest color processing. Color mapping curves may also be configured, to accomplish the tasks of color correction, enhancement, de-saturation, and color compression.