Abstract:
A method comprises receiving a displacement signal generated by a sensor, the displacement signal generated by the sensor in response to detecting movement of a piston from a retracted position in a cylinder toward an extended position in the cylinder. The method further comprises generating, in response to receiving the displacement signal, a valve control signal to be communicated to a valve located on a vacuum line connecting a vacuum source to a vacuum port of the cylinder. The valve control signal causes the valve to move from a first position in which a vacuum pressure is applied to the cylinder via the vacuum port to a second position in which atmospheric pressure is applied to the cylinder via the vacuum port.
Abstract:
A system for operating a robotic arm comprises a carriage and a robotic arm. The carriage is mounted on a track adjacent to a rotary milking platform having a substantially circular perimeter and a stall for a dairy livestock. The carriage moves along a substantially straight portion of the track tangent to and outside the perimeter of the rotary milking platform at a rate based at least in part upon a speed of rotation of the rotary milking platform. The carriage moves in a direction corresponding to the direction of rotation of the rotary milking platform and such movement of the carriage is independent of any physical coupling between the carriage and the rotary milking platform. The robotic arm extends between the legs of the dairy livestock.
Abstract:
A milking robot comprises a robotic arm, a camera coupled to the robotic arm, a camera-facing nozzle coupled to the robotic arm, and a controller. The robotic arm extends in a longitudinal direction between the hind legs and from the rear of a dairy livestock located in a milking stall. The camera-facing nozzle sprays a protective layer of the camera with a cleanser. The controller communicates a signal instructing the camera-facing nozzle to spray the camera with cleanser.
Abstract:
A robotic attacher retrieves a preparation cup from the right side of an equipment area located behind a dairy livestock and attaches and detaches the preparation cup to the teats of the dairy livestock in sequence. The sequence comprises attaching and detaching the preparation cup to the left front teat, the right front teat, the right rear teat, and the left rear teat.
Abstract:
A system for operating a robotic arm comprises a carriage and a robotic arm. The carriage is mounted on a track adjacent to a rotary milking platform having a substantially circular perimeter and a stall for a dairy livestock. The carriage moves along a substantially straight portion of the track tangent to and outside the perimeter of the rotary milking platform at a rate based at least in part upon a speed of rotation of the rotary milking platform. The carriage moves in a direction corresponding to the direction of rotation of the rotary milking platform and such movement of the carriage is independent of any physical coupling between the carriage and the rotary milking platform. The robotic arm extends between the legs of the dairy livestock, and remains extended between the legs of the dairy livestock as the stall rotates adjacent to the robotic arm.
Abstract:
A system comprises a memory and a processor. The memory stores information about a milking stall where a dairy livestock is located at a first time, and a coordinate location of the dairy livestock at a second time. The processor is communicatively coupled to the memory and determines if the coordinate location of the dairy livestock at the second time is different than the milking stall where the dairy livestock is located at the first time. If the coordinate location where the dairy livestock is located at the second time is not the milking stall, the processor generates an error flag associated with the dairy livestock.
Abstract:
A system includes a milking box and a robotic attacher. The milking box has a stall to accommodate a dairy livestock. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method, comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the shut-off valve corresponding to the inlet to close, and by causing the drain valve corresponding to the inlet to open.
Abstract:
A milking system includes a rotary milking platform having a plurality of milking stalls and a plurality of milking devices, each milking device configured for attachment to the teats of a dairy livestock located in a corresponding milking stall of the rotary milking platform. The system further includes one or more robotic devices operable to perform one or more functions, including preparing the teats of a dairy livestock for the attachment of a milking apparatus, attaching a milking apparatus to the teats of a dairy livestock, and applying a sanitizing agent to the teats of a dairy livestock subsequent to the removal of a milking apparatus from the teats of the dairy livestock. Each of the one or more functions performed by the one or more robotic devices is performed during a period of time when the rotary milking platform is substantially stationary.