Abstract:
An apparatus for a High Power Amplifier (HPA) in a wireless communication system is provided. In one example, the apparatus includes a temperature sensor for determining temperature, a controller for receiving the determined temperature and for controlling a gate bias voltage corresponding to the determined temperature and an amplifier for amplifying a Radio Frequency (RF) signal by using the controlled gate bias voltage.
Abstract:
There are provided an apparatus and method for recovering a clock signal from a burst mode signal. A first delay delays an input data signal for half of a time period of the input data signal, and produces a first delay signal. An XOR gate adds the input data signal and the first delay signal provided from the first delay, and provides an inverted signal of the added signal. An OR gate adds an output signal of the XOR gate and a second delay signal, and provides the added signal as a recovered clock signal. A second delay delays the added signal provided from the OR gate for an integer multiple of a time period of the input data signal, and produces the second delay signal that is provided to the OR gate. The frequency of the recovered clock signal is not limited by any delay in the gate elements due to a phase transition of the input data signal occurring when every other packet is provided.
Abstract:
A method of analyzing a failure in a semiconductor integrated circuit device may include storing defects and analog characteristics correlated with the defects in a database, detecting a fail bit in a first wafer, measuring analog characteristics of the fail bit in the first wafer, and identifying which defect has caused the fail bit by comparing the measured analog characteristics with the stored analog characteristics.
Abstract:
The fuel cell stack includes: two end plates arranged to be opposite to each other with a predetermined interval therebetween; first current collectors respectively contacting insides of the end plates; second current collectors respectively contacting the first current collectors and having a coefficient of thermal expansion greater than that of the first current collectors; third current collectors selectively contacting the second current collectors depending on a surrounding temperature; separators respectively contacting an inside of the third current collectors; a membrane electrode assembly contacting the separators and disposed alternately with the separators so as to form a stack in which a plurality of cells are piled up; a connecting device encompassing the two end plates and elements arranged between the two end plates; and a bolt fixing the connecting device.
Abstract:
Provided is an optical module including a microstrip line, a traveling wave type optical device positioned in the end of the microstrip line, and at least one balanced open stub connected to the microstrip line for the impedance matching at a specific frequency such as 40 GHz and 60 GHz. For the fine tuning, laser trimming can be applied to the stub. A transition region is formed between the optical device and the microstrip line. A termination resistor is formed to face the microstrip line with the optical device therebetween. A bandwidth can be controlled at a specific frequency by adjusting a number of the stubs or a value of the termination resistor.
Abstract:
The fuel cell system comprises a fuel cell stack, a fuel gas supply unit, an oxidation gas supply unit, a fuel cell cooling unit, a fuel gas humidifier, an oxidation gas humidifier, and a control unit. The fuel gas humidifier humidifies fuel gas that is supplied to the fuel cell stack from the fuel gas supply unit by using remaining fuel gas that is exhausted from the fuel cell stack. The oxidation gas humidifier humidifies oxidation gas that is supplied to the fuel cell stack from the oxidation gas supply unit by using remaining oxidation gas that is exhausted from the fuel cell stack.
Abstract:
Provided is an HPA apparatus for a TDD wireless communication system. In the HPA apparatus, a power amplifier amplifies the power of an input signal. A gate bias controller turns on/off a gate bias of the power amplifier in accordance with a TDD control signal. A constellation error optimizer circuit removes a current fluctuation and a power noise, which occur when the gate bias controller turns on/off the power amplifier in a TX mode, to stabilize a drain bias thereof.
Abstract:
Provided is a real-time dynamic channel assignment method based on a genetic algorithm in a radio communication system, and a computer-readable recording medium for recording a program implementing the method. The channel assignment method in accordance with the present invention has following advantages. First, an evaluation function clearly shows the difference between chromosomes, which represents channel assignment, can be set. Second, the efficiency in calculation time and memory capacity is increased by representing the assignment of channels arranged in one-dimensional using inherent channel numbers. Third, by controlling the Elitist pool crossover method and mutation probability properly, diversity is pursued in the initial process of the evolution program, and then as generation repeats, the convergence is enhanced so as to increase the efficiency in obtaining the optimum solution.
Abstract:
Disclosed herein is an Erbium-Doped Fiber Amplifier (EDFA) used in a WDM (Wavelength Division Multiplexing) transmission system. In accordance with the present invention, a variation of the intensity of the output optical signal in the optical fiber amplifier, which results from an gain imbalance due to different wavelength distribution caused by the gain inhomogeneity characteristics, can be prevented by examining the laser diode sensitive to the gain inhomogeneity characteristics in the erbium-doped optical fiber amplifier, constructing the filter having spectrum characteristics capable of suppressing the gain imbalance of the optical signal outputted from the optical fiber amplifier, and driving the sensitive laser diode using the electrical signal obtained by branching some of the input optical signal and passing the branched optical signal through the filter and driving other laser diodes with a constant voltage value.
Abstract:
An optical gate based optical space division switch for switching optical signals inputted through arbitrary input ports to a desired output port with no internal collision. The optical space division switch comprises a first splitting section for splitting the optical signals inputted through the input ports, a first amplification section for selectively amplifying output optical signals from the first splitting section, a second splitting section for splitting output optical signals from the first amplification section, a second amplification section for selectively amplifying output optical signals from the second splitting section, a coupling section for coupling output optical signals from the second amplification section, and a third amplification section for amplifying an output optical signal from the coupling section and transferring the amplified optical signal to the output port. According to the present invention, optical gates are connected in a two-stage manner to cross-couple optical signals. Therefore, the optical signals are transferred only to a desired output port, thereby reducing the number of their crosstalk components and so significantly improving a signal-to-noise ratio.