Abstract:
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
Abstract:
A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
Abstract:
Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
Abstract:
Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
Pilot, preamble and midamble patterns are provided that are particularly suited for four transmit antenna OFDM systems. Pilots are inserted in a scattered manner for each of the four antennas, either uncoded, space-time coded in pairs, space-time frequency coded in pairs, or space-time-frequency coded.
Abstract:
A method and system for allocating shareable wireless transmission resources. A resource pool is established. The resource pool is divided into a plurality of physical layer allocation units usable for wirelessly transmitting control information and traffic data. The allocation units are assigned at the media access control layer for the wireless transmission of the control information and traffic data. The system and method of the present invention also allows mobile stations to be dynamically grouped into multicast groupings to reduce system overhead resource requirements.
Abstract:
A method and system for allocating shareable wireless transmission resources. A resource pool is established. The resource pool is divided into a plurality of physical layer allocation units usable for wirelessly transmitting control information and traffic data. The allocation units are assigned at the media access control layer for the wireless transmission of the control information and traffic data. The system and method of the present invention also allows mobile stations to be dynamically grouped into multicast groupings to reduce system overhead resource requirements.
Abstract:
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
Abstract:
A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).