Abstract:
An LCD panel including a first substrate, a second substrate disposed above the first substrate, a plurality of signal lines disposed on the first substrate, and a plurality of sub-pixel sets arranged between the first substrate and the second substrate. Each sub-pixel set includes a plurality of sub-pixels electrically connected to the signal lines, each sub-pixel set has a spacer disposed between the first substrate and the second substrate, and each spacer form a region in each corresponding sub-pixel set, wherein the area of the sub-pixel with the region is substantially greater than the area of other sub-pixels, and the effective display area of the sub-pixel with the region is substantially equal to the effective display area of other sub-pixels.
Abstract:
In a transflective liquid crystal display having a transmission area and the reflection area, the transmissive electrode is connected to a switching element to control the liquid crystal layer in the transmission area, and the reflective electrode is connected to the switching element via a separate capacitor to control the liquid crystal layer in the reflection area. The separate capacitor is used to shift the reflectance in the reflection area toward a higher voltage end in order to avoid the reflectance inversion problem. In addition, an adjustment capacitor is connected between the reflective electrode and a different common line. The adjustment capacitor is used to reduce or eliminate the discrepancy between the gamma curve associated with the transmittance and the gamma curve associated with the reflectance.
Abstract:
A pixel structure of a fringe field switching liquid crystal display (FFS-LCD) and a method for manufacturing the pixel structure are provided. Compared to the conventional method of using seven photolithography-etching processes for manufacturing a pixel structure, the method of the present invention uses only six photolithography-etching processes that save manufacturing costs and time. Furthermore, the pixel structure thereby only comprises two insulating layers, and thus, the light transmittance thereof can be increased in comparison to the conventional pixel structure comprising three insulating layers.
Abstract:
A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
Abstract:
An LCD panel including a first substrate, a second substrate disposed above the first substrate, a plurality of signal lines disposed on the first substrate, and a plurality of sub-pixel sets arranged between the first substrate and the second substrate. Each sub-pixel set includes a plurality of sub-pixels electrically connected to the signal lines, each sub-pixel set has a spacer disposed between the first substrate and the second substrate, and each spacer form a region in each corresponding sub-pixel set, wherein the area of the sub-pixel with the region is substantially greater than the area of other sub-pixels, and the effective display area of the sub-pixel with the region is substantially equal to the effective display area of other sub-pixels.
Abstract:
The present invention relates to a shift register having a plurality of stages electrically coupled to each other in series. Each stage includes a first and second TFT transistor. The first TFT transistor has a get electrically coupled to the output of the immediately prior stage, a drain electrically coupled to the boost point of the stage, and a source configured to receive one of the first and second control signals. The second TFT transistor has a get electrically coupled to the output of the immediately next stage, a drain and a source electrically coupled the drain and the source of the first transistor, respectively.
Abstract:
A transflective liquid crystal display having a plurality of pixels, each pixel having a plurality of color sub-pixels. Each sub-pixel comprises a reflective electrode, a transmissive electrode connected to a secondary reflective electrode. The transmissive electrode is associated with a color filter, while one only of the reflective electrode and the secondary reflective electrode is associated with a color filter. The transmissive electrode is associated with a first charge storage capacitance. The reflective electrode is associated with a second charge storage capacitance which is adjustable depending on the operating states of the liquid crystal display.
Abstract:
A display device having slim border-area architecture is disclosed. The display device includes a substrate, a plurality of data lines, a plurality of gate lines, a plurality of auxiliary gate lines and a driving module. The substrate includes a display area and a border area. The data lines, the gate lines and the auxiliary gate lines are disposed in the display area. The driving module is disposed in the border area. The gate lines are crossed with the data lines perpendicularly. The auxiliary gate lines are parallel with the data lines. Each auxiliary gate line is electrically connected to one corresponding gate line. The data and auxiliary gate lines are electrically connected to the driving module based on an interlace arrangement. Further disclosed is a driving method for delivering gate signals provided by the driving module to the gate lines via the auxiliary gate lines.
Abstract:
A liquid crystal display (LCD) panel including an active device array substrate, an opposite substrate and a liquid crystal layer is provided. The active device array substrate includes a substrate, a plurality of scan lines, a plurality of data lines, and a plurality of pixel units. The scan lines, the data lines and the pixel units are disposed on the substrate. Each of the pixel units is electrically connected to one of the scan lines and one of the data lines correspondingly and crosses over two sides of the corresponding scan line. The opposite substrate includes a plurality of alignment protrusions. The alignment protrusions are located over the scan lines. Besides, the liquid crystal layer is disposed between the opposite substrate and the active device array substrate. The above-mentioned liquid crystal display panel has higher aperture ratio.
Abstract:
A liquid crystal display (LCD) panel and a manufacturing method thereof are provided. The manufacturing method includes providing a panel including a first substrate having scan lines, data lines, an active device electrically connecting the scan and data lines, and a pixel electrode electrically connecting the active device, a second substrate having an opposite electrode, and a liquid crystal (LC) layer disposed between the first and the second substrates and having a monomer material. A first curing voltage and a second curing voltage are applied to the scan and data lines, respectively. The second curing voltage is thus transmitted to the pixel electrode. The first curing voltage is higher than an absolute value of the second curing voltage. The monomer material is polymerized to form a first polymer stabilized alignment (PSA) layer between the LC layer and the first substrate and a second PSA layer between the LC layer and the second substrate. The electrical field is then removed.