Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided for separating control transmissions and data transmissions within the coverage area of a plurality of transmission/reception points or points that are geographically displaced, the plurality of points comprising a macro node and a plurality of remote radio heads (RRHs) coupled to the macro node. Separating control transmissions and data transmissions in the macro node/RRH configuration may allow UEs to be associated with one set of transmission points for data transmissions and the same set or a different set of transmission points for common control signaling. Separating control transmissions and data transmissions may also allow for faster reconfiguration of antenna ports used for UE data transmission compared with reconfiguration via a handover process.
Abstract:
Methods and apparatuses are provided that include selecting reference signal (RS) or other tones to utilize in estimating a channel for decoding one or more channels. Where the RS tones are interfered by other base stations, interference cancelation can be performed over the RS tones. Since interference can vary over the tones, interference cancelation can yield RS tones of varying quality. Thus, a quality of each of the RS tones can be determined, and at least a subset of the RS tones can be selected for estimating a channel. Additionally or alternatively, the RS tones can be weighted or otherwise classified for performing channel estimation using the RS tones.
Abstract:
When communications of a single radio access technology (RAT), or different radio access technologies in a proximate communication spectrum are operating at the same time, potential interference between devices may occur. To reduce the interference, the time division duplex (TDD) configuration of one or more conflicting device may be altered. For example, at the edge of a communication region, TDD configurations used by edge base stations to communicate with mobile devices may be set to reduce interference. As another example, communications of a first device may be altered so the first device schedules uplink communications when a second device also has uplink communications scheduled. Other configurations may also be implemented.
Abstract:
An idle mode UE can RACH to a cell different from the cell paging the UE. The UE can be allocated additional time to respond to all cells in the neighborhood to identify the cell in which to RACH. Interference cancellation can occur at different rates based on whether the UE is in connected mode or idle mode. The time to respond to the page can be a function of a paging cycle. Additionally, a variable bias may promote early handoff to lower power cells and late handoff to high power cells.
Abstract:
Support for multiple wireless access technologies in a common radio access network is provided. In one aspect, a method of wireless communication includes determining whether to map a shared data channel to at least one resource element. The mapping determination is based at least in part on whether the shared data channel is associated with a legacy wireless technology or an advanced wireless technology. The method further includes transmitting the shared data channel based at least in part on the mapping determination and transmitting a reference signal in the at least one resource element.
Abstract:
Techniques for supporting communication in a dominant interference scenario are described. A user equipment (UE) may communicate with a first base station and may observe high interference from and/or may cause high interference to a second base station. In one design, the first base station may use a first frequency band, which may overlap at least partially with a second frequency band for the second base station and may further extend beyond the second frequency band. The first base station may send at least one synchronization signal and a broadcast channel in a center portion of the first frequency band for use by UEs to detect the first base station. The second frequency band may be non-overlapping with the center portion of the first frequency band. The first base station may also communicate with at least one UE on the first frequency band.
Abstract:
Methods, systems, and devices for wireless communications are described that enable efficient group-based acknowledgment feedback reporting. Techniques are provided for feedback for a number of different downlink transmissions to be reported by a user equipment (UE) using transport block level feedback, code block group level feedback, or combinations thereof. Acknowledgment feedback may be provided in one or more group-based or enhanced dynamic feedback reports, a one-shot feedback report, or any combinations thereof.
Abstract:
Techniques and devices for wireless communications are described that provide for staggering sounding reference signal (SRS) transmissions in frequency across multiple orthogonal frequency division multiplexing (OFDM) symbols, which may allow multiple UEs to transmit SRS using a common listen-before-talk (LBT) gap for a LBT procedure. The techniques also provide for transmitting an SRS across multiple OFDM symbols using same frequency resources, and an orthogonal cover code (OCC) may be applied to the SRS transmission of each OFDM symbol, which may allow multiple UEs to transmit concurrent SRS using a common LBT gap.
Abstract:
Wireless communications systems and methods related to system information communications and decoding are provided. In one embodiment, a wireless communication device receives one or more known bits. The wireless communication device receives a first encoded information block. The wireless communication device decodes the first encoded information block to generate a first information block based on the one or more known bits. In one embodiment, a wireless communication device receives a first encoded information block including a first bit pattern. The wireless communication device receives a second encoded information block including a second bit pattern. The wireless communication device jointly decodes the first encoded information block and the second encoded information block based on an assumption that a difference between the first bit pattern and the second bit pattern is within a subset of a plurality of bit-change patterns.
Abstract:
Configured grant operations for new radio (NR) unlicensed spectrum (NR-U) carrier aggregation (CA) are disclosed. In an aspect, a method of wireless communication by a user equipment (UE) may include transmitting uplink (UL) data to a base station according to a configured grant configuration. The method may also include determining a carrier to receive feedback from the base station based on the configured grant configuration. The method may further include receiving feedback from the base station on the carrier in response to the transmitting of the UL data.