Abstract:
Certain aspects of the present disclosure relate to techniques for reporting Channel Quality Indicator (CQI). In certain aspects, a User Equipment (UE) may schedule switch from at least a first set of zero or more antennas used by the UE, to at least one second set of zero or more antennas, wherein the first and second sets differ by at least one antenna. The UE may determine a Channel Quality Indicator (CQI) to be reported from the UE for use at a base station in a subsequent CQI subframe set, based at least on the scheduled switch. The UE may thereafter transmit the CQI to the base station.
Abstract:
A method and apparatus are provided to manage the assignment transmission resource of forward and reserve link that is assigned to transmitting entity for a period of time. An indication of a gap is provided whenever the transmitting entity is not transmitting actual data packets (e.g. whole or part of intended data or content), yet the transmitting entity is to maintain the assignment of the allocated resource. For example, an erasure signature packet comprising a first data pattern is transmitted on the assigned resource when there is no actual data to transmit on the assigned resource.
Abstract:
Techniques for transmitting pilot and for processing received pilot to obtain channel and interference estimates are described. A terminal may generate pilot symbols for a first cluster in a time frequency block based on a first sequence and may generate pilot symbols for a second cluster in the time frequency block based on a second sequence. The first and second sequences may include common elements arranged in different orders and may be considered as different versions of a single sequence. The terminal may transmit the pilot symbols in their respective clusters. A base station may obtain received pilot symbols from multiple clusters in the time frequency block. The base station may form each of multiple basis vectors with multiple versions of the sequence assigned to the terminal and may process the received pilot symbols with the multiple basis vectors to obtain a channel estimate for the terminal.
Abstract:
An image of real world is processed to identify blocks as candidates to be recognized. Each block is subdivided into sub-blocks, and each sub-block is traversed to obtain counts, in a group for each sub-block. Each count in the group is either of presence of transitions between intensity values of pixels or of absence of transition between intensity values of pixels. Hence, each pixel in a sub-block contributes to at least one of the counts in each group. The counts in a group for a sub-block are normalized, based at least on a total number of pixels in the sub-block. Vector(s) for each sub-block including such normalized counts may be compared with multiple predetermined vectors of corresponding symbols in a set, using any metric of divergence between probability density functions (e.g. Jensen-Shannon divergence metric). Whichever symbol has a predetermined vector that most closely matches the vector(s) is identified and stored.
Abstract:
When a UE does not completely decode a packet transmitted from a base station, the UE may send ACK/NACK to the base station, upon which the base station may retransmit the packet based on the ACK/NACK. However, the ACK/NACK fails to provide the base station with information needed by the UE for completely decoding the packet. Accordingly, a method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a packet from a base station having a first MCS, determines information to provide to the base station, wherein the information comprises CQI relating to a channel condition and/or interference condition corresponding to time-frequency resources allocated for the received packet, and sends the information to the base station. Thereafter, the apparatus re-receives the packet from the base station, the re-received packet having a second MCS according to the information sent to the base station.
Abstract:
Methods and apparatus for performing receive antenna diversity measurements in measurement gaps are provided. One embodiment may include communicating with a serving base station using a first set of one or more receive antennas during a normal operational period, performing receive antenna diversity measurements with a second set of one or more receive antennas during a measurement gap between normal operational periods, and selecting one or more receive antennas for at least one of use and/or combining, based on the receive antenna diversity measurements.
Abstract:
Apparatuses and methodologies are described that enhance performance in a wireless communication system using beamforming transmissions. According to one aspect, the channel quality is monitored. Channel quality indicators can be used to select a scheduling technique, such as space division multiplexing (SDM), multiple-input multiple output (MIMO) transmission and opportunistic beamforming for one or more user devices. In addition, the CQI can be used to determine the appropriate beam assignment or to update the beam pattern.
Abstract:
An attribute is computed based on pixel intensities in an image of the real world, and thereafter used to identify at least one input for processing the image to identify at least a first maximally stable extremal region (MSER) therein. The at least one input is one of (A) a parameter used in MSER processing or (B) a portion of the image to be subject to MSER processing. The attribute may be a variance of pixel intensities, or computed from a histogram of pixel intensities. The attribute may be used with a look-up table, to identify parameter(s) used in MSER processing. The attribute may be a stroke width of a second MSER of a subsampled version of the image. The attribute may be used in checking whether a portion of the image satisfies a predetermined test, and if so including the portion in a region to be subject to MSER processing.
Abstract:
Certain aspects of the present disclosure relate to techniques for transmitting a clear to send (CTS)-to-self indication. According to certain aspects, a method for wireless communications by a wireless device is provided. The method generally includes scheduling a first antenna at the wireless device for communication using one of a first radio access technology (RAT) or a second RAT, scheduling one or more other antennas at the wireless device configured for communication using the first RAT, for communication using the second RAT in order to enable one of transmit or receive diversity on the second RAT or simultaneous communication on the first and second RATs, and transmitting an idle-mode indication to force he first RAT to an idle mode.
Abstract:
In several aspects of described embodiments, an electronic device and method use a camera to capture an image or a frame of video of an environment outside the electronic device followed by identification of blocks of regions in the image. Each block that contains a region is checked, as to whether a test for presence of a line of pixels is met. When the test is met for a block, that block is identified as pixel-line-present. Pixel-line-present blocks are used to identify blocks that are adjacent. One or more adjacent block(s) may be merged with a pixel-line-present block when one or more rules are found to be satisfied, resulting in a merged block. The merged block is then subject to the above-described test, to verify presence of a line of pixels therein, and when the test is satisfied the merged block is processed normally, e.g. classified as text or non-text.