摘要:
Dehydrogenatable hydrocarbons are dehydrogenated by contacting them, at hydrocarbon dehydrogenation conditions, with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component maintained in the elemental metallic state, and of a manganese component. An example of the attenuated superactive nonacidic multimetallic catalytic composite disclosed herein is a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of an alkali or alkaline earth component, a manganese component, and of a platinum group component which is maintained in the elemental metallic state during the incorporation of a rhenium carbonyl component.
摘要:
Isomerizable hydrocarbons are isomerized using a catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, of a tin component, and of a halogen component.
摘要:
A novel attenuated superactive multimetallic catalytic composite especially useful for converting hydrocarbons comprises a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation of the rhenium carbonyl component, and of a bismuth component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, bismuth component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.01 to about 5 wt. % bismuth about 0.1 to about 3.5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of a bismuth component and of a platinum group metal maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e. platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent.
摘要:
Dehydrocyclizable hydrocarbons are converted to aromatics by contacting them at hydrocarbon dehydrocyclization conditions with an attenuated superactive acidic multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing catalytically effective amounts of a halogen component, a cadmium component and a uniform dispersion of a catalytically effective amount of a platinum group component which is maintained in the elemental metallic state. The platinum group, pyrolyzed rhenium carbonyl, cadmium and halogen components are present in the multimetallic catalyst in amounts respectively, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.01 to about 5 wt. % cadmium and about 0.1 to about 3.5 wt. % halogen. A specific example of a dehydrocyclization method disclosed herein is a method for converting a feed mixture of n-hexane and n-heptane to a product mixture of benzene and toluene which involves contacting the feed mixture and a hydrogen stream with the attenuated superactive acidic multimetallic catalyst disclosed herein at hydrocarbon dehydrocyclization conditions.
摘要:
A novel attenuated superactive multimetallic catalytic composite especially useful for converting hydrocarbons comprises a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation of the rhenium carbonyl component, and of a zirconium component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, zirconium component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.01 to about 5 wt. % zirconium and about 0.1 to about 3.5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of a zirconium component and of a platinum group metal maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e. platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent.
摘要:
A nonacidic catalytic composite especially useful for dehydrogenating dehydrogenatable hydrocarbons comprises a combination of a platinum group component, a cobalt component, a zinc component, and an alkali or alkaline earth component with a porous carrier material in amounts sufficient to result in a composite containing about 0.01 to about 2 wt. % platinum group metal, about 0.05 to about 5 wt. % cobalt, about 0.01 to about 5 wt. % zinc and about 0.1 to about 5 wt. % alkali metal or alkaline earth metal.
摘要:
Dehydrogenatable hydrocarbons are dehydrogenated by contacting them, at dehydrogenation conditions, with a nonacidic catalytic composite comprising a combination of catalytically effective amounts of a platinum group component, a cobalt component, a lanthanide series component and an alkali or alkaline earth component with a porous carrier material in amounts sufficient to result in a composite containing about 0.01 to about 2 wt. % platinum group metal, about 0.05 to about 5 wt. % cobalt, about 0.01 to about 5 wt. % lanthanide series metal and about 0.1 to about 5 wt. % alkali metal or alkaline earth metal.
摘要:
Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of a catalytically effective amount of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 5 wt. % iron and about 0.1 to about 3.5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e. platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions.
摘要:
An attenuated superactive multimetallic catalytic composite especially useful for converting hydrocarbons comprises a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of a catalytically effective amount of a platinum group component, which is maintained in the elemental metallic state, and of a silver component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, silver component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.01 to about 5 wt. % silver and about 0.1 to about 3.5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of a silver component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e. platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent.
摘要:
A novel attenuated superactive multimetallic catalytic composite, especially useful for the conversion of hydrocarbons, comprises a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state, and of an indium component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, indium component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.01 to about 5% indium and about 0.1 to about 3.5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an indium component and of a platinum group metal maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e. platinum-seeking) propensities of the carbon monoxide ligand used in the rhenium reagent.