Abstract:
An integrated circuit designing system includes a non-transitory storage medium that is encoded with first and second sets of standard cell layouts that are configured for performing a selected function and which correspond to a specific manufacturing process. The manufacturing process is characterized by a nominal minimum pitch (T) for metal lines with each of the standard cell layouts being characterized by a cell height (H) that is a non-integral multiple of the nominal minimum pitch. The system also includes a hardware processor coupled to the storage medium for executing a set of instructions for generating an integrated circuit layout utilizing a combination of the first and second set of standard cell layouts and the nominal minimum pitch. The first and second sets of standard layouts are related in that each of the second set of standard cell layouts corresponds to a transformed version of a corresponding standard cell layout from the first set of standard cell layouts.
Abstract:
A layout includes a plurality of cells and at least one dummy gate electrode continuously extends across the cells. Since the dummy gate electrode is electrically conductive, the dummy gate electrode can be utilized for interconnecting the cells. That is, some signals may travel through the dummy gate electrode rather than through a metal one line or a metal two line. Therefore, an amount of metal one lines and/or metal two lines for interconnecting the cells can be reduced.
Abstract:
A method includes positioning a first set of conductive traces in a first direction, manufacturing a second set of conductive traces by a first mask pattern, and electrically coupling, by at least a first via, at least one conductive trace of the first set of conductive traces to at least one conductive trace of the second set of conductive traces. The first set of conductive traces is in a first layer of an integrated circuit. The second set of conductive traces is in a second direction different from the first direction. The second set of conductive traces is in a second layer of the integrated circuit. The second layer is different from the first layer. A conductive trace of the second set of conductive traces is part of a first dummy transistor.
Abstract:
An integrated circuit includes a semiconductor substrate, an isolation region extending into, and overlying a bulk portion of, the semiconductor substrate, a buried conductive track comprising a portion in the isolation region, and a transistor having a source/drain region and a gate electrode. The source/drain region or the gate electrode is connected to the buried conductive track.
Abstract:
A device includes gates and a first conductive segment. A first distance is present between a first gate of the gates and the first conductive segment. A second distance is present between a second gate of the gates and the first conductive segment. The first distance is greater than the second distance.
Abstract:
A system and method of layout design for an integrated circuit and integrated circuit, the method includes positioning all conductive traces of a first mask pattern, in a first direction, wherein the conductive traces of the first mask pattern are in a first conductive layer. The method also includes positioning all conductive traces of a second mask pattern, in the first direction, wherein the conductive traces of the second mask pattern are in the first conductive layer, and the second mask pattern is offset from the first mask pattern in a second direction different from the first direction.
Abstract:
A method of forming a layout design for fabricating an integrated circuit is disclosed. The method includes identifying a line pattern of a first set of grid lines with respect to a second set of grid lines within a region of the layout design; and placing a k-th standard cell layout of the K standard cell layouts at the region of the layout design if the line pattern is determined to match a k-th predetermined line pattern of K predetermined line patterns. K is an integer equal to or greater than two, and k is an order index ranging from 1 to K. The region of the layout design is sized to fit one of K different standard cell layouts corresponding to a same standard cell functionality.
Abstract:
A set of masks corresponds to an integrated circuit layout. The integrated circuit layout includes a first cell having a first transistor region and a second transistor region, and a second cell having a third transistor region and a fourth transistor region. The first cell and the second cell adjoin each other at side cell boundaries thereof, the first transistor region and the third transistor region are formed in a first continuous active region, and the second transistor region and the fourth transistor region are formed in a second continuous active region. The set of masks is formed based on the integrated circuit layout.
Abstract:
An integrated circuit layout that includes a first standard cell having a first transistor region and a second transistor region; a second standard cell having a third transistor region and a fourth transistor region. The first and second standard cells adjoin each other at side boundaries thereof and the first transistor region and the third transistor region are formed in a first continuous active region, and the second transistor region and the fourth transistor region are formed in a second continuous region.
Abstract:
An integrated circuit layout includes a first metal line, a second metal line, at least one first conductive via and a first conductive segment. The first metal line is formed along a first direction. The at least one first conductive via is disposed over the first metal line. The second metal line is disposed over at least one first conductive via and is in parallel with the first metal line. The first conductive segment is formed on one end of the second metal line.