Abstract:
The present disclosure relates to an integrated chip. The integrated chip includes a plurality of gate structures arranged over a substrate and between adjacent ones of a plurality of source/drain regions within the substrate. A plurality of conductive contacts are electrically coupled to the plurality of source/drain regions. A first interconnect wire is arranged over the plurality of conductive contacts, and a second interconnect wire arranged over the first interconnect wire. A via rail contacts the first interconnect wire and the second interconnect wire. The via rail has an outer sidewall that faces an outermost edge of the plurality of source/drain regions and that is laterally separated from the outermost edge of the plurality of source/drain regions by a non-zero distance. The outer sidewall of the via rail continuously extends past two or more of the plurality of gate structures.
Abstract:
An integrated circuit structure includes a first metal feature formed into a first dielectric layer, a second metal feature formed into a second dielectric layer, the second dielectric layer being disposed on said first dielectric layer, and a via connecting the first metal feature to the second metal feature, wherein a top portion of the via is offset from a bottom portion of the via.
Abstract:
A method of manufacturing an integrated circuit includes generating a first layout design based on design criteria, performing a color mapping between the first layout design and a standard cell layout design thereby generating a via color layout design, and manufacturing the integrated circuit based on the via color layout design. The first layout design has a first set of vias divided into sub-sets of vias based on a corresponding color indicating that vias of the sub-set of vias with a same color, and vias of the sub-set of vias with a different color. The standard cell layout design has a second set of vias arranged in standard cells. The via color layout design has a third set of vias including a portion of the second set of vias and corresponding locations, and color of the corresponding sub-set of vias.
Abstract:
A semiconductor device including multiple fins. At least a first set of fins among the multiple fins is substantially parallel. At least a second set of fins among the multiple fins is substantially collinear. For any given first and second fins of the multiple fins having corresponding first and second fin-thicknesses, the second fin-thickness is less than plus or minus about 50% of the first fin-thickness.
Abstract:
A method includes forming a first layer on a substrate; forming a first plurality of trenches in the first layer by a first patterning process; and forming a second plurality of trenches in the first layer by second patterning process, wherein a first trench of the second plurality merges with two trenches of the first plurality to form a continuous trench. The method further includes forming spacer features on sidewalls of the first and second pluralities of trenches. The spacer features have a thickness. A width of the first trench is equal to or less than twice the thickness of the spacer features thereby the spacer features merge inside the first trench.
Abstract:
The present disclosure provides a method of patterning a target material layer over a semiconductor substrate. The method includes steps of forming a spacer feature over the target material layer using a first sub-layout and performing a photolithographic patterning process using a second sub-layout to form a first feature. A portion of the first feature extends over the spacer feature. The method further includes steps of removing the portion of the first feature extending over the spacer feature and removing the spacer feature. Other methods and associated patterned semiconductor wafers are also provided herein.
Abstract:
The present disclosure provides a method of patterning a target material layer over a semiconductor substrate. The method includes steps of forming a spacer feature over the target material layer using a first sub-layout and performing a photolithographic patterning process using a second sub-layout to form a first feature. A portion of the first feature extends over the spacer feature. The method further includes steps of removing the portion of the first feature extending over the spacer feature and removing the spacer feature. Other methods and associated patterned semiconductor wafers are also provided herein.
Abstract:
A method of semiconductor device fabrication including forming a mandrel on a semiconductor substrate is provided. The method continues to include oxidizing a region the mandrel to form an oxidized region, wherein the oxidized region abuts a sidewall of the mandrel. The mandrel is then removed from the semiconductor substrate. After removing the mandrel, the oxidized region is used to pattern an underlying layer formed on the semiconductor substrate.
Abstract:
The present disclosure describes methods for transferring a desired layout into a target layer on a semiconductor substrate. An embodiment of the methods includes forming a first desired layout feature as a first line over the target layer; forming a spacer around the first line; depositing a spacer-surrounding material layer; removing the spacer to form a fosse pattern trench surrounding the first line; and transferring the fosse pattern trench into the target layer to form a fosse feature trench in the target layer, wherein the fosse feature trench surrounds a first portion of the target layer that is underneath a protection layer. In some embodiments, the method further includes patterning a second desired layout feature of the desired layout into the target layer wherein the fosse feature trench and the protection layer serve to self-align the second desired layout feature with the first portion of the target layer.
Abstract:
A method for fabricating a semiconductor device includes forming a plurality of first spacers over a substrate. A second spacer of a plurality of second spacers is deposited on sidewalls of each first spacer. In some embodiments, a spacing between adjacent first spacers is configured such that second spacers formed on sidewalls of the adjacent first spacers physically merge to form a merged second spacer. A second spacer cut process may be performed to selectively remove at least one second spacer. In some embodiments, a third spacer of a plurality of third spacers is formed on sidewalls of each second spacer. A third spacer cut process may be performed to selectively remove at least one third spacer. A first etch process is performed on the substrate to form fin regions. The plurality of third spacers mask portions of the substrate during the first etch process.