Abstract:
A filter element assembly has at least two cylindrically shaped and concentrically arranged filter media sleeves each connected at one end thereof to an inlet plate and each connected at the other end to a closed end terminal plate. Openings are provided in the inlet plate to permit entry of liquid to be filtered into the annular space between the filter sleeves. The closed end terminal plate prevents flow of unfiltered liquid from the annular space between the sleeves so as to force the liquid through the porous media of the sleeves to effect filtration.
Abstract:
A filter assembly containing readily replaceable cartridge filters and a manifold that makes use of a dual seal to fluidly segregate a filtered water product from an unfiltered water source while also eliminating leakage outside the filter assembly. The dual seal consists of at least two seals located on an engagement surface on the cartridge filter. The first seal having an increased diameter over the second seal such that the second seal resides entirely within the first seal in a substantially concentric and coplanar orientation. Rotational installation of the cartridge filter brings the dual seals into physical contact with sealing surfaces located on the manifold creating a fluid tight seal.
Abstract:
A fuel filter assembly (10) for filtering diesel fuel includes a filter head (12), a spin-on replaceable element (13) and a collection bowl (15) removable from the element. The element includes a casing (52) with a turned-in edge portion at a lower end. An adaptor ring (69) is supported on said edge portion inside the element and includes an annular threaded portion (71). The collection bowl has an outer peripheral wall (74) with an annular threaded portion engaging the threaded portion of the adaptor ring. The outer peripheral wall of the bowl has an annular shoulder abutting the turned-in edge portion of said casing to clamp said casing between the adaptor ring and the bowl, when the bowl is attached to the element. The adaptor ring has a plurality of spaced ribs (70) with projections that extend upward and radially outward to maintain the filter medium (55) spaced from an inner wall surface of the casing. A resilient member (68) holds the filter medium between a top plate (62) and the adaptor ring.
Abstract:
An engine oil filter has an upper cap and a lower case or plate, which are engageable with each other through a projecting portion and a groove portion. In one mode, the projecting portion is inserted into a first longitudinal groove wall and moved along a contact surface of a first skewed groove wall, whereby the cap and the case are moved and fitted together in an axial direction. As axial movement caused by relative rotation between the cap and the case takes place, an O-ring is tightly fitted therebetween at a fixed seal position. This engagement process applies no excessive force to the O-ring so that a sealed state of high reliability is provided.
Abstract:
A filter comprises a housing having a container and cover which enclose a filter element. The container includes a hollow central post which extends upwardly from the base of the container. The upper end cap for the filter element includes a base supporting the filter media and a cylinder extending downwardly within the central cavity of the filter media. A first seal is provided around the periphery of the upper end cap to seal the intersection between the container and the cover. A second seal on an upwardly-extending flange on the upper end cap seals against a corresponding downwardly-extending flange on the cover. A plurality of slots in the base of the upper end cap provide a flow path from an inlet on the cover to the upstream surface of the filter media. The lower end cap also includes a base supporting the filter media and a cylinder extending upwardly within the cavity of the filter media and defining a central lower opening for receipt of the central post. The cylinders of the upper and lower end caps axially overlap and provide a radially inwardly-facing groove which receives a third O-ring seal. The third O-ring provides a seal between the filter element and the central post of the filter element. A bolt is received within the hollow central post of the container and extends upwardly through an opening formed in the cover. A nut tightened down on the bolt fastens the cover and the container together. The head of the bolt includes a surface geometry which cooperates with the surface geometry of the bore in the central post to prevent the bolt from rotating as the nut is tightened down.
Abstract:
A fuel filter assembly (10) includes a filter head (12) having a fuel inlet (18) and a fuel outlet (20). A filter element (14) is attached to said filter head. A collection bowl (16) is attached to the filter element. The filter element includes an outer wall (36) with upper and lower turned in edge portions (62, 72). Upper and lower ring shaped members (64, 74) are in abutting contact with said turned in edge portions and are positioned intermediate of said edge portions and end caps (46, 48) of an annular filter medium (38). The end caps include central openings (54) surrounded by circular resilient gaskets (58). The filter element (14) is attachable by either of its ring shaped members to the filter head and collection bowl.
Abstract:
A pressure relief seal for pressure tanks having separable tank sections is disclosed. The seal is formed by an O-ring within an O-ring cavity, in turn formed by each tank section. Overpressurization or improper assembly of the tank sections causes the O-ring to be displaced from its sealing position to permit fluid in the tank to flow past the O-ring and through pressure relief channels at the seal.
Abstract:
A filter assembly and associated collection bowl for a single or dual contaminant collection zone arrangement use a self-sealing o-ring in combination with a threaded mating arrangement in order to withstand high pressure differentials. The filter assembly may include an end cap having a plurality of downwardly projecting ribs distinct from a threaded connector ring upon which the end cap rests or the ribs may be integral with the connector ring and separate from the end cap. The lower end of the filter housing includes a number of contaminant channels between adjacent pairs of the ribs, the contaminant channels leading to corresponding contaminant outlets.
Abstract:
A plastic filter assembly having an upper receiving container and a lower receiving container. Either the top or bottom container is provided with at least two recesses for receiving a locking pin in the container not having recesses. The recess has a first receiving portion and a locking portion. The locking pin has an angled engaging surface inclined with respect to longitudinal axis of the container.
Abstract:
This disclosure concerns a vessel or housing having a removable domed cover and a horizontal partition in the housing to form separate dirty and clean liquid chambers, and having a single large vertical cylindrical pleated filter cartridge clamped against the lower side of the partition in the dirty liquid chamber in the housing. The filter cartridge has a central perforated tube which axially fits over and is spaced from a vertical outlet duct extending up from the bottom of the housing through an aperture in the partition, which aperture forms an annular opening from the interior of the filter cartridge into the clean liquid chamber in the domed cover. The lower end of the filter cartridge seals to a sleeve around the bottom of the vertical outlet duct. The seals for the top and bottom of the cartridge may comprise integral soft plastisol annuli or ring gaskets in the harder plastisol end discs which seal the ends of the pleats of the filter cartridge and the ends of its central perforated tube. The liquid to be filtered enters the housing below the partition around the outside of the filter cartridge and the filtered liquid passes through the perforated central tube of the cartridge around the outside of the vertical outlet duct up into the domed cover and then down through the vertical outlet duct. This construction insures automatic removal of any gases which may accumulate in the domed cover.