Abstract:
A plasma display panel includes a front substrate and a rear substrate, with a discharge space therebetween. Row and column electrodes extend on an inner surface of the front substrate. Each display line is defined by paired two adjacent row electrodes. A dielectric layer covers the row electrodes. Unit light-emission areas are formed in the discharge space at intersections of the row and column electrodes. A partition wall matrix comparts the unit light-emission areas from each other. A separation wall divides each unit light-emission area into a first discharge cell, in which discharge occurs across the paired two adjacent row electrodes associated with that unit light-emission area, and a second discharge cell, in which discharge occurs across one of the paired two adjacent row electrodes and the column electrode concerned. The first discharge cell communicates with the second discharge cell via a passage in each unit light-emission area.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Further, each of the discharge cells is formed such that ends thereof increasingly decrease in width along a direction the discharge sustain electrodes are formed as a distance from a center of the discharge cells is increased along a direction the address electrodes are formed.
Abstract:
A plasma display panel in which partition walls are formed to have different widths includes a front substrate and a rear substrate facing the front substrate. The front substrate includes sustain electrodes, a dielectric layer that covers the sustain electrodes, and a protective layer formed on the bottom of the dielectric layer. The rear substrate includes a address electrodes, partition walls formed parallel to the address electrodes discharge spaces therebetween, the partition walls having corresponding different widths. Red, green and blue phosphor layers are deposited on the corresponding insides of adjacent pairs of the partition walls.
Abstract:
A plasma display panel includes first and second substrates that are substantially parallel to each other with a predetermined gap therebetween. The substrates include a display region and a non-display region. Barrier ribs are mounted between the first and second substrates within the display region and define discharge cells. The barrier ribs include an outermost barrier rib located at an edge of the display region. Dummy barrier ribs are mounted between the first and second substrates within the non-display region. The dummy barrier ribs include a first sub barrier rib disposed at a predetermined distance from the outermost barrier rib, and at least one second sub barrier rib connected to the first sub barrier rib and the outermost barrier rib.
Abstract:
A plasma display panel and method of producing same, in which projections are formed in grooves between partitions and phosphor layers are provided on the projections so as to increase the area where phosphor adheres and thereby to increase the luminance. A pair of substrates, opposed to each other, form a discharge space. Band-like partitions partitioning the discharge space are arranged on one of the back and front substrates. Wall-like projections, lower than the partitions but high enough to increase the area where phosphor layers are formed, are provided in the region where the discharge space is formed in the long grooves between the partitions or around the discharge space. Phosphor layers are formed in the grooves between the partitions including the wall-like projections.
Abstract:
It is aimed to provide a technique for easily suppressing swellings produced in end parts of partitions, thereby achieving a PDP capable of displaying a high-quality image. A PDP therefore has a plurality of partitions that include: (a) a plurality of main parts; and (b) a plurality of sub parts that each extend from an end part of one of the plurality of main parts parallel to a direction perpendicular to a direction in which the main parts extend. This allows each partition to have an end that is wider than a center part of the partition. In the process of forming PDP partitions, end parts of the partitions are partially heated, after they are baked, to a temperature higher than a softening point of a partition material. As a specific partial heating method, a method with which a laser beam is projected onto an end part is suitable.
Abstract:
In a plasma display panel, a partition wall 15 surrounds each of discharge cells to define the discharge cells. Each of the discharge cells is divided by a second transverse wall 15B into a display discharge cell C1 which is opposite transparent electrodes Xa, Ya of paired row electrodes X, Y to provide for a sustaining discharge; and an addressing discharge cell C2 which is opposite a bus electrode Yb of the row electrode Y to provide for an addressing discharge caused between the bus electrode Yb and a column electrode D. A clearance r is provided between the discharge cell C1 and the addressing discharge cell C2 for communication between the cells C1 and C2.
Abstract:
A plasma display panel comprises a front substrate plate; a back substrate plate arranged opposite to the front substrate plate with an electric discharge space formed therebetween; a plurality of partition walls dividing the discharge space into a plurality of discharge cells; and a plurality of fluorescent layers each covering the bottom and side surfaces of each discharge cell. In particular, each of the partition walls has a T-shaped cross section.
Abstract:
A gas discharge display apparatus, in which a plurality of cells filled with a discharge gas are arranged in a matrix pattern in a space between first and second substrates placed in opposition to each other, and at least one pair of display electrodes are arranged on a surface of the first substrate facing the second substrate so as to span the plurality of cells. Here, each pair of display electrodes includes two extension parts that extend lengthwise along the matrix. A plurality of inner projections are electrically connected to each extension part, and protrude toward the other extension part. At least two connectors are arranged, with a fixed interval therebetween, between the two extension parts, each connector electrically connecting at least two inner projections provided for a same extension part.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.