Abstract:
Gasifiers that may be used for gasifying hydrocarbon-containing materials are disclosed. Methods for use of such gasifiers are also disclosed. In an embodiment, a gasifier includes a gasification reaction vessel having one or more electrodes positioned therein. The one or more electrodes may be used to alter a chemical and/or thermodynamic equilibrium of the gasification reaction. For example, the one or more electrodes may be used to make the oxidation zone more oxidizing and/or to make the reduction zone more reducing such that oxidation and/or reduction reactions are favored. Electrodes in such gasifiers may, for example, be used to alter the mix of products produced by the gasification reaction, to lower the gasification reaction temperature, to enable altering the dimensions of the gasifier (e.g., to make the gasifier smaller) without sacrificing efficiency, and/or to speed up startup and/or shutdown.
Abstract:
Technologies are provided for employing an ion flow to control a combustion reaction. A combustion reaction is supported at a burner or fuel source. One or more electrical signals are applied to an ionizer to generate an ion flow having a first polarity. The ion flow is introduced to the combustion reaction or a reactant at a first location, imparting a corresponding charge to the combustion reaction. The first location is at least intermittently upstream with respect to a reaction front of the combustion reaction. One or more of the electrical signals are applied to a first electrode at a second location downstream of the first location, which provokes a response by the combustion reaction according to the applied charge. The combustion reaction is controlled by selection of the one or more electrical signals.
Abstract:
An electrically stabilized burner is configured to support a combustion reaction such as a combustion reaction substantially at a selected fuel dilution and with a mixing rate selected to maximize the reaction rate without quenching the combustion reaction.
Abstract:
A rotary kiln includes a stationary burner and at least one electrode configured to apply an electric field and/or voltage to a flame supported by the stationary burner. The electric field may contain the flame and/or accelerate combustion to shift most heat transfer from the flame from radiation heat transfer to convective heat transfer.
Abstract:
A combustion system supports a swirl-stabilized preheating flame with a preheating fuel and an oxidant. The combustion system preheats a perforated flame holder with the preheating flame. After the perforated flame holder has been preheated to the threshold temperature, the combustion system outputs a primary fuel. The perforated flame holder receives a mixture of the primary fuel and the oxidant supports a combustion reaction of the primary fuel and the oxidant.
Abstract:
A combustion system includes a fuel and oxidant source that outputs fuel and oxidant, a first perforated flame holder, and a second perforated flame holder separated from the first perforated flame holder by a gap. The first and second perforated flame holders sustain a combustion reaction of the fuel and oxidant within the first and second perforated flame holders.
Abstract:
A combustion system includes a perforated flame holder, a fuel nozzle configured to output fuel toward the perforated flame holder, and a plasma ignition device configured to output a plasma during a preheating state of the combustion system and to cease outputting the plasma to transition from the preheating state to the standard operating state. In the preheating state the plasma ignition device causes a preheating flame of the fuel stream at a position between the fuel nozzle and the perforated flame holder. In the standard operating condition, the plasma is not present and the fuel stream impinges on the perforated flame holder. The perforated flame holder supports a combustion reaction of the fuel stream within the perforated flame holder when in the standard operating state.
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
A burner supporting primary and secondary combustion reactions may include a primary combustion reaction actuator configured to select a location of the secondary combustion reaction. A burner may include a perforated flame holder structure configured to support a secondary combustion reaction above a partial premixing region. The secondary flame support location may be selected as a function of a turndown parameter. Selection logic may be of arbitrary complexity.