Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include antennas. The antennas may include phased antenna arrays for handling millimeter wave signals. Antennas may be located in antenna signal paths. The antenna signal paths may include adjustable components such as adjustable filters, adjustable gain amplifiers, and adjustable phase shifters. Circuitry may be incorporated into an electronic device to facilitate wireless self-testing operations. Wireless self-testing may involve use of one antenna to transmit an over-the-air antenna test signal that is received by another antenna. The circuitry that facilitates the wireless self-testing operations may include couplers, adjustable switches for temporarily shorting antenna signal paths together, mixers for mixing down radio-frequency signals to allow digitization with analog-to-digital converters, and other circuitry for supporting self-testing operations.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and first and second antennas. An electronic device may include a housing. The first antenna may be located at an upper end of the housing and the second antenna may be located at a lower end of the housing. A peripheral conductive member may run around the edges of the housing and may be used in forming the first and second antennas. The radio-frequency transceiver circuitry may have a transmit-receive port and a receive port. Switching circuitry may connect the first antenna to the transmit-receive port and the second antenna to the receiver port or may connect the first antenna to the receive port and the second antenna to the transmit-receive port.
Abstract:
An accessory such as a wireless earbud may have an antenna for transmitting and receiving wireless signals. A housing for the earbud may have a main body portion and an extended portion that forms a stalk protruding from the main body portion. The earbud may have a speaker aligned with a speaker port in the main body portion. The antenna may have an elongated shape and may extend along the stalk. The stalk may have a plastic housing wall portion. The antenna may be formed from first and second metal traces on opposing sides of a printed circuit substrate. The first metal trace may form an antenna resonating element arm and may lie between the substrate and the plastic housing wall portion. The second metal trace may be a ground trace. A feed for the antenna may be located at a juncture between the main body portion and the stalk.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. An antenna may have an antenna feed that is coupled to a radio-frequency transceiver with a transmission line. An impedance matching circuit may be coupled to the antenna feed to match the impedance of the transmission line and the antenna. The impedance matching circuit and tunable circuitry in the antenna may be formed using integrated circuits. Each integrated circuit may include switching circuitry that is used in switching components such as inductors and capacitors into use. Sensors such as temperature sensors, current and voltage sensors, power sensors, and impedance sensors may be integrated into the integrated circuits. Each integrated circuit may store settings for the switching circuitry and may include communications and control circuitry for communicating with external circuits and processing sensor data.
Abstract:
An electronic device may have components mounted in a housing. The device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a cover layer having an inner surface with a recess. The recess may run along a peripheral edge of the cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a dielectric antenna carrier. The resonating element may be mounted in the recess without adhesive. Conductive vias may pass through the dielectric carrier. Metal members with dimples may be soldered to a flexible printed circuit and may be used to ground metal traces on the carrier and the flexible printed circuit to the housing when the carrier is attached to the housing with fasteners.
Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
Abstract:
An accessory such as a wireless earbud may have an antenna for transmitting and receiving wireless signals. A housing for the earbud may have a main body portion and an extended portion that forms a stalk protruding from the main body portion. The earbud may have a speaker aligned with a speaker port in the main body portion. The antenna may have an elongated shape and may extend along the stalk. The stalk may have a plastic housing wall portion. The antenna may be formed from first and second metal traces on opposing sides of a printed circuit substrate. The first metal trace may form an antenna resonating element arm and may lie between the substrate and the plastic housing wall portion. The second metal trace may be a ground trace. A feed for the antenna may be located at a juncture between the main body portion and the stalk.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements. Phased antenna arrays may be mounted along edges of a housing for the electronic device, behind a dielectric window such as a dielectric logo window in the housing, in alignment with dielectric housing portions at corners of the housing, or elsewhere in the electronic device. A phased antenna array may include arrays of patch antenna elements on dielectric layers separated by a ground layer. A baseband processor may distribute wireless signals to the phased antenna arrays at intermediate frequencies over intermediate frequency signal paths. Transceiver circuits at the phased antenna arrays may include upconverters and downconverters coupled to the intermediate frequency signal paths.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An electronic device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing from conductive housing structures, printed circuit boards, and other conductive elements. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The radio-frequency transceiver circuitry may implement receiver diversity using both the upper and lower antennas. The lower antenna may be used in transmitting signals. The upper antenna may be tuned using a tunable matching circuit.