Abstract:
An electronic device may include first and second antennas formed from respective first and second segments of a housing. The first antenna may have a first feed coupled to the first segment by a first switch and coupled to the first segment by a first conductive trace. The second antenna may have a second feed coupled to the second segment by a second switch and coupled to the second segment by a second conductive trace. The first segment may be separated from the second segment by a single gap, a data connector may pass through the second segment, and the antennas may selectively cover a low band. Alternatively, the first segment may be separated from the second segment by a third segment and two gaps, the data connector may pass through the third segment, and the first and second antennas may concurrently cover the low band.
Abstract:
An electronic device may be provided with wireless circuitry and a housing with upper and lower ends. The upper end may include first and second inverted-F antennas formed from portions of conductive peripheral housing structures separated from an antenna ground by a slot. The upper end may include an open slot antenna formed from a portion of the slot. The upper end may include an additional inverted-F antenna that overlap the slot. A parasitic element may be disposed between the open slot antenna and the additional inverted-F antenna and coupled to the antenna ground at a proximal end. A tuning component may be coupled between the parasitic element and the antenna ground.
Abstract:
An electronic device may include a housing and four antennas at respective corners of the housing. Cellular telephone transceiver circuitry may concurrently convey signals at one or more of the same frequencies over one or more of the four antennas using a multiple-input multiple-output (MIMO) scheme. In order to isolate adjacent antennas, dielectric-filled openings may be formed in conductive walls of the housing to divide the walls into segments that are used to form resonating element arms for the antennas. If desired, first and second antennas may include resonating element arms formed from a wall without any gaps. The first and second antennas may include adjacent return paths. A magnetic field associated with currents for the first antenna may cancel out with a magnetic field associated with currents for the second antenna at the adjacent return paths, thereby serving to electromagnetically isolate the first and second antennas.
Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
Abstract:
Electronic device antenna structures may include first and second antennas. A housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by an opening. An antenna feed for the first antenna may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground. A return path for the first antenna may span the opening in parallel with the antenna feed. A plastic carrier may be mounted to a printed circuit and a metal housing structure using screws. The plastic carrier may support an antenna resonating element for the second antenna and may support the return path for the first antenna. The screws may short metal structures on the plastic carrier to the metal structures and traces on the printed circuit.
Abstract:
An electronic device may be provided with wireless circuitry and a housing having peripheral conductive housing structures. The wireless circuitry may include first and second antennas. The first antenna may have a resonating element arm formed from a first segment of the peripheral conductive housing structures. The second antenna may have a resonating element arm formed from a second segment of the peripheral conductive housing structures separated from the first segment by a gap. Switchable short paths may be coupled between the second segment and ground on opposing sides of an antenna feed for the second antenna and/or may be coupled between the first and second segments and ground on opposing sides of the gap. Additionally or alternatively, a switch may be coupled between the first and second segments across the gap and a tuning component may couple the second segment to the ground structures.
Abstract:
An electronic device may be provided with first, second, and third antennas and a dock flex. A first feed terminal for the first antenna may be coupled to a second feed terminal for the second antenna over a first path. The first path may be coupled to ground over a second path. Tuning components may be interposed on the first and second paths. The third antenna may be patterned on a first portion of the dock flex. Front end components for the first antenna may be mounted to a second portion of the dock flex. The first and second portions may extend from a tail of the dock flex. The tail may be wrapped around a plastic support block to hold the second portion over the first portion. The plastic support block may have a snap hook clip that holds the second portion in place.
Abstract:
An electronic device may include an antenna disposed on a substrate. The antenna may include a ring of conductive traces, a fed arm, and an unfed arm. The fed arm and the unfed arm may extend from opposing segments of the ring. The ring may be coupled to ground by fences of conductive vias extending through the substrate. The first arm may have a first radiating edge. The second arm may have a second radiating edge. The first radiating edge may be separated from the second radiating edge by a gap. The first arm may indirectly feed the second arm via near-field electromagnetic coupling across the gap. The first and second arms may collectively radiate in an ultra-wideband (UWB) frequency band.
Abstract:
An electronic device may be provided with first, second, and third antennas and a dock flex. A first feed terminal for the first antenna may be coupled to a second feed terminal for the second antenna over a first path. The first path may be coupled to ground over a second path. Tuning components may be interposed on the first and second paths. The third antenna may be patterned on a first portion of the dock flex. Front end components for the first antenna may be mounted to a second portion of the dock flex. The first and second portions may extend from a tail of the dock flex. The tail may be wrapped around a plastic support block to hold the second portion over the first portion. The plastic support block may have a snap hook clip that holds the second portion in place.
Abstract:
A device with near-field communications (NFC) capabilities is provided. A housing may include first and second segments and a support plate separated from the segments by a slot. A first inductor may be coupled between the first segment and the plate. A second inductor may be coupled between the second segment and the plate. A transceiver may have a first signal terminal coupled to the first segment over a first path and a second signal terminal coupled to the second segment over a second path. The transceiver may convey differential signals in an NFC band over a loop path for an NFC antenna that includes the first conductive path, the first segment, the first inductor, a portion of the plate between the first and second inductors, the second inductor, the second segment, and the second conductive path. This may optimize wireless performance and volume for the NFC antenna.