Abstract:
A fin field effect transistor integrated circuit (FinFET IC) has a plurality of fins extending from a semiconductor substrate, where a trough is defined between adjacent fins. A second dielectric is positioned within the trough, and a protruding portion of the fins extends above the second dielectric. A first dielectric is positioned between the fin sidewalls and the second dielectric.
Abstract:
Approaches for isolating source and drain regions in an integrated circuit (IC) device (e.g., a fin field effect transistor (finFET)) are provided. Specifically, the FinFET device comprises a gate structure formed over a finned substrate; an isolation oxide beneath an active fin channel of the gate structure; an embedded source and a drain (S/D) formed adjacent the gate structure and the isolation oxide; and an epitaxial (epi) bottom region of the embedded S/D, the epi bottom region counter doped to a polarity of the embedded S/D. The device further includes a set of implanted regions implanted beneath the epi bottom region, wherein the set of implanted regions may be doped and the epi bottom region undoped. In one approach, the embedded S/D comprises P++ doped Silicon Germanium (SiGe) for a p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) and N++ Silicon Nitride (SiN) for a n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET).
Abstract:
Aspects of the present invention relate to an approach for forming an integrated circuit having a set of fins on a silicon substrate, with the set of fins being formed according to a predetermined pattern. In situ doping of the fins with an N-type dopant prior to deposition of an epitaxial layer minimizes punch through leakage whilst an epitaxial depositional process applies a cladding layer on the doped fins, the deposition resulting in a multigate device having improved device isolation.
Abstract:
Structures for a waveguide and methods of fabricating a structure for a waveguide. A grating coupler is formed that has an arrangement of grating structures. A conformal layer is arranged over the plurality of grating structures. The conformal layer is composed of a tunable material having a refractive index that changes with an applied voltage.
Abstract:
Structures for a grating coupler and methods of fabricating a structure for a grating coupler. The grating coupler includes a first plurality of grating structures and a second plurality of grating structures that alternate with the first plurality of grating structures in an interleaved arrangement. The first plurality of grating structures are composed of a dielectric material or a semiconductor material. The second plurality of grating structures are composed of a tunable material having a refractive index that changes with an applied voltage.
Abstract:
Structures for a polarizer and methods of fabricating a structure for a polarizer. A first waveguide core has a first width, and a polarizer includes a second waveguide core having a second width that is greater than the first width. The second waveguide core is coupled to the first waveguide core. The polarizer includes a layer that is positioned adjacent to a side surface of the second waveguide core. The layer is comprised of a material having a permittivity with an imaginary part that ranges from 0 to about 15.
Abstract:
Structures with waveguides in multiple levels and methods of fabricating a structure that includes waveguides in multiple levels. A waveguide crossing has a first waveguide and a second waveguide arranged to intersect the first waveguide. A third waveguide is displaced vertically from the waveguide crossing, The third waveguide includes a portion having an overlapping arrangement with a portion of the first waveguide. The overlapping portions of the first and third waveguides are configured to transfer optical signals between the first waveguide and the third waveguide.
Abstract:
Structures that include a waveguide and methods of fabricating a structure that includes a waveguide. A first dielectric layer comprised of a first silicon nitride is formed. The waveguide is arranged over the first dielectric layer. A second dielectric layer is formed that is arranged over the waveguide. The second dielectric layer is composed of a second silicon nitride having a lower absorption of optical signals than the first silicon nitride.
Abstract:
One illustrative device includes, among other things, at least one fin defined in a semiconductor substrate and a substantially vertical nanowire having an oval-shaped cross-section disposed on a top surface of the at least one fin.
Abstract:
Waveguiding structures and methods of fabricating a waveguiding structure. The waveguiding structure includes a waveguide and an array of semiconductor fins that are arranged at least in part inside the waveguide.