Abstract:
A method and apparatus for reconfiguring a wireless transmit/receive unit (WTRU) are directed to receiving an active set update message indicating that a mode of operation allowing a certain modulation scheme is enabled or disabled and performing at least one of: performing a MAC reset procedure, updating a set of reference enhanced transport format combination indicators (E-TFCIs) and associated power offsets, determining actions related to E-DPCCH boosting, modifying information related to an enhanced dedicated channel (E-DCH), and modifying an index that indicates an E-DCH transport block size table. The update message includes at least one modified information element (IE).
Abstract:
A method and an apparatus for uplink transmission using multiple uplink carriers are disclosed. A wireless transmit/receive unit (WTRU) selects a dedicated channel medium access control (MAC-d) flow with highest priority data to be transmitted and performs uplink carrier selection and enhanced dedicated channel (E-DCH) transport format combination (E-TFC) restriction and selection to select a carrier among a plurality of carriers and select an E-TFC based on a maximum supported payload, a remaining scheduled grant payload of the selected carrier and a remaining non-scheduled grant payload. The WTRU then generates a medium access control (MAC) protocol data unit (PDU) for E-DCH transmission via the selected carrier based on the selected E-TFC.
Abstract:
Methods and apparatus utilize hybrid automatic repeat request (HARQ) transmissions and retransmissions that are usable on multiple carriers, i.e. joint HARQ processes. For example, a downlink (DL) shared channel transmission of a joint HARQ process is received on one of the carriers. A first part of an identity of the joint HARQ process is determined by using HARQ process identity data received on a shared control channel. A second part of the joint HARQ process identity is determined using additional information. The joint HARQ process identity is then determined by combining the first part and the second part. A WTRU is provided that is configured to receive the DL shared channel and to make the aforementioned determinations. A variety of other methods and apparatus configurations are disclosed for utilizing joint HARQ processes, in particular in the context of DC-HSDPA.
Abstract:
A method for dynamically controlling the transmit power of transmission streams transmitted via multiple antennas is disclosed. A transmit power level for multiple streams is determined based on a first reference channel. The difference of signal to interface ratios (SIRs) between two reference channels may represent a power offset. The power offset may be used to determine gain factors used to transmit data channels on the secondary stream with reference to the gain factor of the first reference channel. The power offset may be used to determine other parameters, such a serving grant or transport block sizes of channels carried on the secondary stream. The power offset may allow transmission parameters of channels on the secondary stream to be determined based on the transmit power level of the primary stream and a gain factor for a reference channel transmitted via the primary stream.
Abstract:
A method and an apparatus for transmitting pilots on multiple antennas are disclosed. A wireless transmit/receive unit (WTRU) may transmit a primary dedicated physical control channel (DPCCH) and at least one secondary DPCCH via multiple antennas using different channelization codes. When a required transmit power exceeds a maximum allowed transmit power of the WTRU, power scaling may be applied equally to the primary DPCCH and the secondary DPCCH, such that a power ratio between the primary DPCCH and the secondary DPCCH remains the same before scaling as after scaling. The secondary DPCCH may include a same number of pilot bits as the primary DPCCH both in a normal mode and in a compressed mode, respectively. The same total pilot energy ratio may be maintained between the primary DPCCH and the secondary DPCCH both in a normal mode and in a compressed mode, respectively.
Abstract:
A method and apparatus for radio link synchronization and power control in CELL_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an acquisition indicator acknowledging the RACH preamble via an acquisition indicator channel (AICH) and an index to an enhanced dedicated channel (E-DCH) resource. The WTRU determines a start of an E-DCH frame. An F-DPCH timing offset is defined with respect to one of the RACH access slot and an AICH access slot carrying the acquisition indicator. A relative F-DPCH timing offset may be signaled to the WTRU and the WTRU may determine a start of an E-DCH frame based on the relative F-DPCH timing offset and timing of an AICH access slot including the acquisition indicator. The WTRU may transmit a dedicated physical control channel (DPCCH) power control preamble before starting an E-DCH transmission.
Abstract:
Method and apparatus for uplink transmission using multiple antennas are disclosed. A wireless transmit/receive unit (WTRU) performs space time transmit diversity (STTD) encoding on an input stream of a physical channel configured for STTD. Each physical channel may be mapped to either an in-phase (I) branch or a quadrature-phase (Q) branch. The WTRU may perform the STTD encoding either in a binary domain or in a complex domain. Additionally, the WTRU may perform pre-coding on at least one physical channel including the E-DPDCH with the pre-coding weights, and transmitting the pre-coded output streams via a plurality of antennas. The pre-coding may be performed either after or before spreading operation.
Abstract:
Method and apparatus for uplink transmission using multiple antennas are disclosed. A wireless transmit/receive unit (WTRU) performs space time transmit diversity (STTD) encoding on an input stream of a physical channel configured for STTD. Each physical channel may be mapped to either an in-phase (I) branch or a quadrature-phase (Q) branch. The WTRU may perform the STTD encoding either in a binary domain or in a complex domain. Additionally, the WTRU may perform pre-coding on at least one physical channel including the E-DPDCH with the pre-coding weights, and transmitting the pre-coded output streams via a plurality of antennas. The pre-coding may be performed either after or before spreading operation.
Abstract:
A method for dynamically controlling the transmit power of transmission streams transmitted via multiple antennas is disclosed. A transmit power level for multiple streams is determined based on a first reference channel. The difference of signal to interface ratios (SIRs) between two reference channels may represent a power offset. The power offset may be used to determine gain factors used to transmit data channels on the secondary stream with reference to the gain factor of the first reference channel. The power offset may be used to determine other parameters, such a serving grant or transport block sizes of channels carried on the secondary stream. The power offset may allow transmission parameters of channels on the secondary stream to be determined based on the transmit power level of the primary stream and a gain factor for a reference channel transmitted via the primary stream.
Abstract:
Methods and apparatus utilize hybrid automatic repeat request (HARQ) transmissions and retransmissions that are usable on multiple carriers, i.e. joint HARQ processes. For example, a downlink (DL) shared channel transmission of a joint HARQ process is received on one of the carriers. A first part of an identity of the joint HARQ process is determined by using HARQ process identity data received on a shared control channel. A second part of the joint HARQ process identity is determined using additional information. The joint HARQ process identity is then determined by combining the first part and the second part. A WTRU is provided that is configured to receive the DL shared channel and to make the aforementioned determinations. A variety of other methods and apparatus configurations are disclosed for utilizing joint HARQ processes, in particular in the context of DC-HSDPA.