Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. In one embodiment, The UE requests to switch the DL multicast traffic from the multicast MBMS bearer to the unicast EPS bearer upon detecting that the UE is approaching an MBMS coverage boundary. In another embodiment, the UE transmits an indication of preferred target cells to the network before performing a handover and thereby maintaining multicast service continuity of the group communication.
Abstract:
Methods to manage multiple component carriers (CCs) efficiently in a mobile network with carrier aggregation (CA) enabled are proposed. For CC activation/deactivation, a single LCID value is used to represent both activation and deactivation command. A single command with multiple instructions is provided to activate and/or deactivate multiple CCs. In addition, unnecessary re-activation or re-inactivation of a CC is prevented, and explicit feedback for activation/deactivation is considered. For scheduling mechanism, a novel buffer status reporting (BSR) procedure is provided, where only one BSR is calculated after preparing all the transport blocks (TB) within one transmission time interval (TTI). Novel power headroom reporting (PHR) format and trigger are also provided. For DL-UL linking, various linking types are created based on whether there is carrier indicator field (CIF) in DL grant or UL grant. The various linking types are used in different applications to improve scheduling flexibility and load balancing.
Abstract:
A method of inter-RAT failure event report is proposed. A UE detects a failure event in a first cell served by a first base station, and the first cell belongs to a first RAT. The failure event may include a radio link failure or a handover failure. The UE then performs an RRC establishment procedure with a second cell served by a second base station, and the second cell belongs to a second RAT. After the RRC establishment, the UE transmits a failure event report to the wireless network. The failure event can be a radio link failure, or be associated with a mobility command such as a handover command. By providing more reliable information in the failure event report than a network solution could provide, inter-RAT mobility performance can be improved.
Abstract:
Methods for physical layer multi-point carrier aggregation and feedback configuration are disclosed. In one embodiment of the invention, a UE receives an upper layer configuration includes a first UE-ID associated with a first group of component carriers (CCs) and a second UE-ID associated with a second group of CCs. The UE receives downlink control information via one or more downlink control channels on one or downlink CCs. The UE decodes the downlink control information using the first UE-ID and the second UE-ID. In another embodiment of the invention, the UE receives an upper layer configuration of a first uplink feedback CC associated with a first group of downlink CCs and a second uplink feedback CC associated with a second group of downlink CCs. The UE generates feedback information for the downlink CCs to be carried on their corresponding uplink feedback CC.
Abstract:
An enhanced connection recovery upon lost RRC connection due to radio link failure (RLF) or handover failure (HOF) is proposed. A UE first establishes an RRC connection in a source cell in a mobile communication network. Later on, the UE detects a failure event and starts an RRC reestablishment procedure in a target cell to restore the RRC connection. In a first novel aspect, a fast RLF process is applied to reduce the outage time in the serving cell. In a second novel aspect, an enhanced cell selection mechanism based on cell prioritization information is applied to reduce the outage time in the target cell. In one embodiment, multi-RAT registration is used to steer cell selection.
Abstract:
A method and apparatus for transmitter assisted Quality of Service (QoS) measurement. Time information is generated by the transmitter and transmitted along with a data transmission. A receiving device determines a QoS measurement based upon the time information and the received data. The time information indicates when the data was made available for transmission, which data transmission blocks belong to a single data transmission, and when a transmitter buffer was emptied. The QOS measurements are performance measurement such as, latency measurements and throughput measurements. The time information indicates a time reference relative to the timing of a wireless interface. The time reference is a System Frame Number (SFN), a Connection Frame Number (CFN), a relative count of frame numbers, a count of sub-frames, or a count of Time Transmission Intervals (TTIs). An aggregated QOS measurement is generated based upon the QOS measurement.
Abstract:
A method of throughput and data volume measurement for minimization of drive test (MDT) is proposed. A base station establishes a radio resource control (RRC) connection with a user equipment (UE) in a mobile communication network. The base station or UE measures transmitted or received data volume during a transmission time of a data burst between the base station and the UE. When the data burst spans multiple measurement periods and the data burst is split at each measurement period boundary. For each measurement period, data volume during the measurement period is measured to generate a measurement result. When throughput measurement is performed by the network, the base station receives location information that is available during the transmission time of the data burst. The data volume measurement is logged with time stamp such that each measurement result can correlated with the location information.