Abstract:
A communication unit comprises a first port; a second port, each of the first and second ports configured to transmit signals to and receive signals from another communication unit; a programmable logic unit configured to process signals transmitted and received by the first and second ports; and a processor configured to program the programmable logic unit for crossover operation based on detection of a crossover connection.
Abstract:
An optical switching device with a switch-and-select architecture uses a single multi-port optical channel router, such as a wavelength selective switch, as a bidirectional switching device. The optical switching device includes the multi-port optical channel router and optical circulators coupled to the input/output ports of the multi-port optical channel router. The optical circulators couple one or more output ports and one or more input ports of the optical switching device to the input/output ports of the optical channel router so that the optical channel router provides symmetric, bi-directional switching at an optical network node.
Abstract:
In embodiments of the disclosed technology, diagnosis of a circuit is performed using compactor signatures (a technique referred to herein as “signature-based diagnosis”). Signature-based diagnosis typically does not require a test step that bypasses the compactor. Compactor signatures can be read from a compactor on a per-pattern basis, and an expected signature can be loaded into a compactor while an actual signature is being read from the compactor. Error functions can be used to describe relationships between errors in scan cell values and per-pattern compactor signatures, and the functions can be used to help generate a list of fault candidates in a circuit design.
Abstract:
An optical switching device has multiple input ports and multiple output ports and is capable of switching a wavelength component from any of the input ports to any of the output ports. The optical switching device is configured with beam steering arrays that are controlled to provide the switching from any of the input ports to any of the output ports. The beam steering arrays may be microelectromechanical (MEMS) mirror arrays or liquid-crystal on silicon (LCOS) panels. In addition, an array of beam-polarizing liquid-crystal elements provides wavelength-independent attenuation.
Abstract:
Aspects of the invention relate to techniques of using two-dimensional scan architecture for testing and diagnosis. A two-dimensional scan cell network may be constructed by coupling input for each scan cell to outputs for two or more other scan cells and/or primary inputs through a multiplexer. To test and diagnose the two-dimensional scan cell network, the two-dimensional scan cell network may be loaded with chain patterns and unloaded with corresponding chain test data along two or more sets of scan paths. Based on the chain test data, one or more defective scan cells or defective scan cell candidates may be determined.
Abstract:
Systems and methods for obtaining location information for a communication station in a first domain by a communication station in a second domain are provided. The communication station in the second domain embeds a location request message in a message formatted according to a first communication protocol, and transmits the message formatted according to the first communication protocol to a proxy server. The proxy server removes the embedded request message and forwards it to a location server, which is located in the first domain. The proxy server receives a location response message and embeds it in another message formatted according to the first communication protocol. The proxy server then transmits the another message formatted according to the first communication protocol to the communication station in the second domain, which can remove the embedded location response message.
Abstract:
A method for creating image products and services for users connected to and in communication with a server through a computer network. User personalization profiles are generated and stored for each of the users and each personalization profile contains personal preferences for the plurality of users. Digital images are received from the plurality of client computers and are stored in a storage system on the digital image server. In response to a particular user selecting an image product or service using a stored digital image, the server automatically provides over the network a customized offering of a second product or service to the particular user. The offering is customized in response to at least one of the image usage profiles and in response to at least one of the user personalization profiles.
Abstract:
A computer or computer system stores digital images, user personalization profiles, and image usage profiles. The image usage profiles contain information identifying how often and by what user a digital image was viewed, shared, printed or otherwise used by a user. The user personalization profiles include information identifying the digital images that are viewed, shared, printed or otherwise used by a user. The system automatically generates and stores a preferred product or service associated with a user personalization profile based on the information in the user profile and on information in an image usage profile.
Abstract:
Disclosed are representative embodiments of methods, apparatus, and systems for partitioning-based Test Access Mechanisms (TAM). Test response data are captured by scan cells of a plurality scan chains in a circuit under test and are compared with test response data expected for a good CUT to generate check values. Based on the check values, partition pass/fail signals are generated by partitioning scheme generators. Each of the partitioning scheme generators is configured to generate one of the partition pass/fail signals for one of partitioning schemes. A partitioning scheme divides the scan cells into a set of non-overlapping partitions. Based on the partition pass/fail signals, a failure diagnosis process may be performed.
Abstract:
Systems and methods for enforcing calling restrictions are provided. When a first and second communication station are located in different domains, calling restrictions for a first communication station can be based on a current geographic location of the second communication station. The calling restrictions can be enforced independent of an address/identifier of the first or second communication station. The calling restrictions can be based on the current geographic locations of the first and second communication stations and the allowed geographic area of the first communication station.