Abstract:
In a disclosed embodiment, a method for communication in a network includes receiving, at a first device registered to the network, a physical layer (PHY) frame that includes a PHY header and a MAC header. The PHY frame may further include a MAC payload. The PHY header includes a destination address field. The method further includes comparing a network address of the first device to the destination address field to determine whether the destination address field stores a value having the same number of bits as the network address. When the comparison indicates that the value stored by the destination address field does not have the same number of bits as the network address, the method skips decoding the MAC header and the MAC payload.
Abstract:
A photoplethysmogram system includes a plurality of sensors, each sensor capable of providing a sensor signal, and an adaptive filter capable of receiving a first input signal and computing an output. The photoplethysmogram system is capable of operating the filter in sequential stages, such that at each different stage the first input signal is a different sensor signal.
Abstract:
An orthogonal frequency division multiplexing (OFDM) receiver includes detection logic, offset generation logic, tone erasure logic, and correction generation logic. The detection logic is configured to detect a signal containing a block of samples that includes a narrowband interferer from a communication channel. The offset generation logic is configured to align a frequency of the narrowband interferer to a center of a subcarrier frequency of the communication channel to produce an offset signal thereby introducing inter-carrier interference (ICI). The tone erasure logic is configured to remove the subcarrier frequency from the offset signal to produce an interferer erased offset signal. The correction generation logic is configured to remove the ICI to produce an interferer erased signal.
Abstract:
A method of encoding a first bit and a second bit for transmission on a transmission band is provided. The method includes: mapping, via a mapping component, the first bit and the second bit into a first symbol; mapping, via the mapping component, the first bit and the second bit into a second symbol; dividing, via a dividing component, the transmission band into subcarriers; allocating, via an allocating component, the first symbol to a first subcarrier of the subcarriers; allocating, via the allocating component, the second symbol to a second subcarrier of the subcarriers; and differentially encoding, via a differential encoder, the first symbol and the second symbol.
Abstract:
A method of powerline communications in a powerline communications (PLC) network including a first node and at least a second node. The first node transmits a data frame to the second node over a PLC channel. The second node has a data buffer for storing received information. The second node runs a flow control algorithm which determines a current congestion condition or a projected congestion condition of the data buffer based on at least one congestion parameter. The current congestion condition and projected congestion condition include nearly congested and fully congested. When the current or projected congestion condition is either nearly congested or fully congested, the second node transmits a BUSY including frame over the PLC channel to at least the first node. The first node defers transmitting of any frames to the second node for a congestion clearing wait time.
Abstract:
Embodiments of the invention provide systems and methods for a cipher then segment approach in a Power Line Communication (PLC). A node or device generates frames to be transmitted to a destination node in the PLC network. A processor in the node is configured to generate a data payload comprising data to be sent to the destination node. The processor divides the data payload into two or more payload segments and encrypts the payload segments. The processor creates a frame for each of the encrypted payload segments, wherein each frame comprises a message integrity code. The processor creates a segment identifier for each frame using the message integrity code and an authentication key that is shared with the destination PLC node. The segment identifier is added to each frame.
Abstract:
A band of interest is divided into band segments. A scan frame is sent by a transmitter at a transmitting PLC node across each band segment. A receiver at a receiving node scans the band segments, listening for the scan frame. Upon detecting a scan frame, the receiving node measures the signal quality of each OFDM subcarrier modulated with symbols from the scan frame. The subcarrier signal quality values are stored in a table. Upon completion of the scan process, the table contains a signal quality value for each subcarrier within the band of interest. The table is then analyzed to find an operating band consisting of subcarriers with a highest average signal quality or a band that results in greater than a pre-determined minimum signal quality. The invented methods and embodiments may operate periodically to readjust the operating band configuration in the presence of electromagnetic interference including time-variant interference.
Abstract:
A method for heart rate measurement in a photoplethysmograph (PPG) heart rate monitor device is provided that includes performing motion compensation on a PPG signal wherein a motion compensated PPG signal PPGaccX is generated with reference to an X-axis acceleration signal, a motion compensated PPG signal PPGaccY is generated with reference to a Y-axis acceleration signal, and a motion compensated PPG signal PPGaccZ is generated with reference to a Z-axis acceleration signal, combining PPGaccX, PPGaccY, and PPGaccZ to generate a final motion compensated PPG signal, wherein a first weight is applied PPGaccX, a second weight is applied to PPGaccY, and a third weight is applied to PPGaccZ, performing a single Fourier Transform (FT) on the final motion compensated PPG signal to generate a frequency domain PPG signal; and estimating a heart rate based on the frequency domain PPG signal.
Abstract:
Systems and methods for routing protocols for power line communications (PLC) are described. In some embodiments, a method performed by a PLC device, such as a PLC meter, may include selecting one or more transmit sub-bands on which to transmit frames, where the transmit sub-bands comprise groups of carrier frequencies. The PLC device then generates a frame comprising a tone map that indicates which transmit sub-bands are used to carry data for the frame. The tone map using two bits per transmit sub-band to indicate a status of each transmit sub-band. The PLC device then transmits the frame on the selected transmit sub-bands. A resolution bit and a mode bit may be used to provide additional information about the transmit sub-bands, such as an amount of power adjustment that has been applied to carrier frequencies and whether dummy bits are transmitted on unused carrier frequencies.
Abstract:
Embodiments of the invention provide multiple cyclic prefix lengths for either both the data-payload and frame control header or only the data payload. Frame control header (FCH) and data symbols have an associated cyclic prefix. A table is transmitted in the FCH symbols, which includes a cyclic prefix field to identify the cyclic prefix length used in the data payload. A receiver may know the cyclic prefix length used in the FCH symbols in one embodiment. In other embodiments, the receiver does not know the FCH cyclic prefix length and, therefore, attempts to decode the FCH symbols using different possible cyclic prefix lengths until the FCH symbols are successfully decoded.