Abstract:
A deflectable sheath for use in medical procedures in the vasculature is described. The sheath includes a handle supporting the sheath. Two pull wires run along opposite sides of the sheath to anchors at the deflectable distal end. The handle includes a rotatable member that moves a threaded member including wire guide in a back and forth translation. As the movement occurs, force is applied to either one or the other of the pull wires to cause deflection of distal end of the sheath in either and upwardly or a downwardly direction with respect to the longitudinal axis of the sheath.
Abstract:
An improved lid for closing the open end of a casing of an electrochemical energy storage device is described. The improved lid comprises a flat region having spaced apart upper and lower planar surfaces joined by a peripheral edge, an angled transition forming a boss protruding from the lower surface, and a bore extending through the boss to the upper surface. An electrical energy storage device is also described, which includes the improved lid secured to the open end of the casing container of the device.
Abstract:
An MRI-compatible electronic medical therapy system is provided for temporarily preventing current flow through an implanted lead wire in the presence of an induced radio frequency, magnetic, or static field. One or more normally closed switches are disposed in series between the AIMD and the one or more distal electrodes. The switch may be incorporated in the AIMD, lead wire, or within or adjacent to the electrode. The switch remains closed during normal AIMD-related therapy, but temporarily opens in the presence of an induced radio frequency, magnetic, or static field so as to prevent current flow through the electrode and lead wire. The switches prevent current from circulating that could be induced by a medical therapeutic diagnostic device, which can cause overheating of lead wires, excessive currents or temperatures and tissue damage.
Abstract:
A new cathode design has a first cathode active material of a relatively low energy density but of a relatively high rate capability contacted to the outer sides of first and second cathode current collectors and a second cathode active material having a relatively high energy density but of a relatively low rate capability in contact with the inner sides of the current collectors. The first and second current collectors have a thickness in the range of from about 0.001 inches to about 0.002 inches. A conventional Li/SVO cell powering an implantable medical device has the cathode with a current collector of about 0.003 inches. Even though the present current collectors are about one-half as thick as that of a conventional cell, their combined thickness means that the cell has no reduction in current carrying capacity.
Abstract:
A capacitor a casing of first and second casing members, a feedthrough electrically insulated from the casing and extending there from, first and second anodes electrically connected to each other within the casing, a cathode, and an electrolyte is described. The first anode is electrically connected in parallel to the second anode by a first anode wire having opposite ends contacting the respective first and second anodes. A feedthrough wire extending outside the casing and electrically isolated there from is electrically connected to the first anode wire intermediate the first and second anodes. The cathode is disposed between the first and second anodes.
Abstract:
An insulator structure forming a physical barrier encapsulating the entire electrode assembly including all the positive portions and segregating them from the negative leads and the casing is described. By completely encapsulating the electrode assembly including the cathode lead portions from the anode leads and the casing, no opposite polarity structures that can potentially serve as a surface for lithium bridging are left exposed to electrolyte.
Abstract:
Nickel-based alloys are provided for use as a positive electrode current collector in a solid cathode, nonaqueous liquid electrolyte, alkali metal anode active electrochemical cell. The nickel-based alloys are characterized by chemical compatibility with aggressive cell environments, high corrosion resistance and resistance to fluorination and passivation at elevated temperatures, thus improving the longevity and performance of the electrochemical cell. The cell can be of either a primary or a secondary configuration.
Abstract:
High reliability electrical connections between a helical strand and flat electrodes, such as strip electrodes found in implantable neurostimulator systems, are described. The connection consists of a crimp joint in which an inside diameter mandrel is used to provided the coil with sufficient radial rigidity to ensure structural integrity of the crimp. The mandrel is made of a relatively soft biocompatible material that deforms rather than damages the fine wires of the helical strand during crimping. The crimp is accomplished by radial deformation of an annular or semi-annular crimping member that receives the helical strand/mandrel assembly.
Abstract:
A highly compact electrochemical cell comprised of a casing having a proximal opening, a distal opening, and an intermediate sidewall surrounding an enclosed volume. A glass-to-metal seal is disposed in the proximal opening and within the enclosed volume of the casing, and a terminal pin extends from outside the casing through the glass-to-metal seal into the enclosed casing volume. An insulator is disposed along the casing sidewall. A cathode is contained within the insulator in electrical contact with the terminal pin. A separator disc is disposed contiguously with the casing sidewall and in contact with the cathode. An anode is provided in contact with the separator disc and with the casing sidewall opposite the cathode. An electrolyte is provided within the cell, and a lid is sealed to the casing to hermetically enclose the cell contents.
Abstract:
A TANK filter is provided for a lead wire of an active medical device (AMD). In a preferred form, the TANK filter is integrated into a TIP and/or RING electrode for an active implantable medical device. The TANK filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the TANK filter is resonant at a selected frequency to attenuate current flow through the lead wire along a range of selected frequencies. In a particularly preferred form, the TANK filter is manufactured using very low k materials of sufficient strength to handle forces applied thereto during installation and use.