Abstract:
The present invention relates, in general, to pressure sensors capable of operating at high temperatures. The present invention further relates to a high temperature pressure sensor with an improved gage factor. The present invention still further provides a pressure sensor with a smaller sized diaphragm, which is capable of reading higher pressures. The present invention also provides a method and sensor for detecting strain using shape memory alloys.
Abstract:
A quasi-static bend sensor is taught that comprises a layering of a plurality of ionic polymer metal composite (IPMC) sections with intervening dielectric sections in a vertical stack configuration. The IPMC sections are electrically connected in parallel. The surface of the stack is coated with high-purity synthetic isoparaffins for polymer hydration to increase step response consistency. Finally, the vertical stack configuration is electrically connected to an electric field measurement device and a linear quadratic regulator based controller for reducing settling time.
Abstract:
A pressure-sensitive conductive rubber for reference is provided inside a housing in such a state that preload is imposed thereon. A pressure-sensitive conductive rubber for detection is also provided inside the housing in such a state that preload is imposed thereon and an external load acts thereon. A load detecting circuit applies voltage to the pressure-sensitive conductive rubbers to determine the external load based on a difference between a detected value corresponding to electric current flowing through the pressure-sensitive conductive rubber for reference and a detected value corresponding to electric current flowing through the pressure-sensitive conductive rubber for detection.
Abstract:
A system for monitoring the structural integrity of structural members of a building using radio frequency identification tags. A plurality of radio frequency modules are secured to structural members, each module including a radio frequency identification tag, a micro processor, a first memory, one or more sensors for measuring data related to the structural integrity of the building members and a transceiver for receiving operational instructions used to monitor the structural integrity of the building and for transmitting the measured data. There is also provided a computing system that transmits the operational instructions to the radio frequency modules and receives the measured data from the modules. In addition, the computing system stores the measured data in a second memory and processes the measured data from the modules.
Abstract:
The inventive pedaling motion measuring device includes: a measurement body unit having a first sensor unit for sensing the number of rotation of a wheel by sensing the motion of the wheel of a bicycle, and second sensor units arranged at right and left crank arms for sensing magnitude and direction of a force applied to each of the right and left crank arms. The first work calculation unit calculates work performed by the bicycle based on the number of rotation of the wheel sensed by the first sensor unit. The second work calculation unit calculates work provided to the crank member by the user within a prescribed time, based on the magnitude and direction of the force applied to each of the right and left crank arms and sensed by the second sensor units. The efficiency calculation unit calculates the efficiency of the bicycle.
Abstract:
An apparatus, and an associated method, forms a user interface permitting input of input instructions to an electronic device. Input commands are evidence by tactile input forces applied to a force receiving surface. Force sensing elements are positioned to sense indications of the tactile input force. The force sensing element is caused to exhibit a selected input parameter value through application of a selected force thereto by application of a tightening torque to a fastener positioned in proximity to the force sensing element.
Abstract:
A pressure detector is disclosed having an organic transistor, a pressure-detecting layer and a first electrode. The organic transistor includes an emitter, an organic layer, a grid formed with holes, and a collector, the organic layer being sandwiched between the emitter and the collector. The pressure-detecting layer is formed on the organic transistor such that the collector is sandwiched between the organic layer and the pressure-detecting layer. The first electrode is formed on the pressure-detecting layer such that the pressure-detecting layer is sandwiched between the collector and the first electrode. The area of the active region of the pressure detector is determined by the overlapped area of the electrodes, thereby reducing the pitch of the electrodes and thus the size of the pressure detector.
Abstract:
The present invention relates to high sensitivity elastic deflection sensors, more particularly related to capacitively coupled FET based elastic deflection sensors. A sub-threshold elastic deflection FET sensor for sensing pressure/force comprises an elastic member forming a moving gate of the sensor, fixed dielectric on substrate of the FET, and a fluid dielectric between the elastic member and the fixed dielectric, wherein alteration in the height of the fluid dielectric (TSENS) due to pressure/force on the elastic member varies the sensor gate capacitance.
Abstract:
A passive wireless sensor is disclosed. The sensor has at least a measurand sensitive member and an electromagnetically resonant member positioned proximate to each other. The resonant member comprises a preselected resonance frequency, such that it scatters at least a portion of an interrogating signal as a scattered signal proximate to its resonance frequency, and the measurand sensitive member alters the scattered signal as a function of the measurand to change the shape of the scattered signal. The reactive field of the sensor is kept within the sensor to minimize environment interference and to maximize its signal strength. Almost bond-free packaging mitigates problems with delamination or internal stresses due to differing coefficients of thermal expansion.
Abstract:
The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.