Abstract:
The invention provides circuitry for carrying out a square root operation. The circuitry utilizes iteration circuitry for carrying out a plurality of iterations. The iteration circuitry includes a circuit for calculating a root multiple, the root multiple being a multiple of a current quotient value. The root multiple is used by the iteration circuitry to modify a current remainder.
Abstract:
A semiconductor integrated circuit includes a hardware mechanism arranged to ensure that associations between instructions and data are enforced so that a processor cannot fetch data from an instruction that is not authorised to do so. A Memory Protection Unit stores entries comprising instructions and associated data memory ranges. A hardware arrangement impairs the operation of the circuit if the CPU attempts to make a data fetch from an instruction that is outside the range associated with data in a Memory Protection Unit. Such functioning may be by issuing a chip reset. The Memory Protection Unit may be implemented in a Memory Management Unit having an extension so as to store a validity flag. The validity flag may only be set by a secure process such as the CPU well entrusted code or by a separate trusted hardware source. In this way, an operating system may function as normal referring to the Memory Management Unit as necessary, but security may be enforced through hardware.
Abstract:
A biasing circuit comprising a first switching device having a control terminal, and first and second switching terminals. The first switching terminal being connected to a supply voltage, the second switching terminal being connected through a first resistive element to ground, and the control terminal being supplied by a reference voltage which is determined depending on the mode of operation of the circuit. The circuit further comprising a first branch connected between the control terminal and ground comprising a second resistive element in series with a second switching device. The second switching device forming part of a first current mirror having a second branch for effecting a generated bias value. During a normal mode of operation the reference voltage is dependant on the generated bias value, whereas during a standby mode of operation the reference voltage is connected to a low potential.
Abstract:
Circuitry is provided for performing a non-arithmetic operation in relation to at least one number. The circuitry includes a first part for carrying out the non-arithmetic operation in relation to the at least one number, the first part providing a result. A second part is arranged to identify at least one characteristic of the at least one number and to provide an output and correction circuitry for providing, if necessary, a correct result in dependence on the output of the second part, wherein said first and second parts are arranged to operate in parallel.
Abstract:
An integrated circuit including functional circuitry; test circuitry connected to the functional circuitry, wherein the test circuitry is arranged to control the testing of the functional circuitry; and clock signal generating circuitry connected to both the functional circuitry and the test circuitry. The test circuitry is arranged to use the clock signal for testing the functional circuitry.
Abstract:
Data is discrete cosine transformed and streamed to a processor where quantized and inverse quantized blocks are generated. A second streaming data connection streams the inverse quantized blocks to an inverse discrete cosine transform block to generate reconstructed prediction error macroblocks. An addition circuit adds each reconstructed prediction error macroblock and its corresponding predictor macroblock to generate a respective reconstructed macroblock. The quantized macroblocks are zig-zag scanned, run level coded and variable length coded to generate and encoded bitstream.
Abstract:
An integrated circuit including test circuitry, the test circuitry including a counter for counting clock signals and having an output for providing a control signal. The counter being arranged to have an internal state, and the counter being arranged to change the control signal on the internal state of counter reaching a predetermined value.
Abstract:
A battery charger is provided which has a power output to charge a battery. The battery charger comprises a power input and a circuit for determining a temperature at the battery charger. The battery charger further includes a controller which varies the power output among a plurality of non-zero power levels in dependence upon the difference between the determined temperature and a reference temperature.
Abstract:
An integrated circuit of the type comprises a plurality of units that may act as initiators and targets. At least some of the units are for a first purpose such as a cable modem function and others are for a second purpose such as television data processing. The units are connected together by a interconnect comprising a number of nodes. One of the nodes is configurable such that requests made from initiator units on one side of the node to target units on the other side of the node are not sent to the target units. The units for the first purpose are arranged on the opposite side of the node from those of the second purpose, so that the circuit is effectively configurable into two separate logical partitions, one partition for television data processing and the other partition for cable modem functions.
Abstract:
An integrated circuit restricts use of a data item and includes a data memory storing the data item; a value memory storing a value; a signature input that receives a signature derived from data in a data item field and a value in a value field, the signature being in a coded form; a decoding circuit that decodes the signature and outputs information representing the data in the data item field and the value in the value field; and a comparison circuit that receives the decoding circuit output, determines whether the information representing the data from the data item field corresponds to the stored data item and whether the information representing the value from the value field corresponds to the value stored in the value memory, and outputs a comparison signal according to the determinations. The circuit restricts the use of the data item according to the comparison signal.