Abstract:
The invention relates to a bidirectional multi-level DC/DC converter and its non-linear control, adapted to transfer power between at least one energy source and an electricity distribution network.
Abstract:
The invention refers to a method for applying heat resistant protection components onto the surface of a heat exposed component. The method including providing at least two separate heat protection components, and joining the at least two separate heat protection components onto their top surface and/or bottom surface and/or at least one side surface by flexible means for obtaining an integrally handable entity. The method further includes fixing the integrally handable entity by applying and brazing the surface of each heat protection component on the surface of the heat exposed component. The materials of the flexible means and for joining the flexible means on the separate heat protection components are selected such that the materials withstand brazing being performed under protective atmosphere, i.e. an atmosphere without or with reduced amount of oxygen, at process temperatures between 700° C. and 1200° C., and that the materials are burned out after brazing during a following oxidizing thermal step.
Abstract:
The invention relates to a carrier ring for a high-pressure gas turbine of a gas turbine plant, which has a high-pressure combustion chamber upstream of the high-pressure gas turbine, a compressor upstream of the high-pressure combustion chamber, a low-pressure combustion chamber downstream of the high-pressure gas turbine, a low-pressure gas turbine downstream of the low-pressure combustion chamber, and a rotor that carries rotor blades for the compressor, for the high-pressure gas turbine, and for the low-pressure gas turbine. The carrier ring carries guide blades and/or heat shields of the high-pressure gas turbine and can be fastened to the high-pressure combustion chamber. The installation of the carrier ring can be simplified by segmenting the carrier ring at least in the area of the guide blades thereof and/or of the heat shields thereof in the circumferential direction, wherein the segmented carrier ring has at least two ring segments that carry the guide blades and/or the heat shields.
Abstract:
The invention relates to a method for operation of a combined-cycle power plant with cogeneration, in which method combustion air is inducted in at least one gas turbine, is compressed and is supplied to at least one combustion chamber for combustion of a fuel, and the resultant exhaust gas is expanded in at least one turbine, producing work, and in which method the exhaust gas emerging from the at least one turbine is passed through a heat recovery steam generator in order to generate steam, which generator is part of a water-steam circuit with at least one steam turbine, a condenser, a feedwater tank and a feedwater pump, wherein heat is provided by extracting steam from the at least one steam turbine. In a method such as this, the electricity production is decoupled from the steam production in that in order to restrict the electricity production while the heat provided by means of steam extraction remains at a constant level, a portion of the inducted combustion air is passed through the at least one turbine to the heat recovery steam generator without being involved in the combustion of the fuel in the gas turbine, and in that this portion of the combustion air is used to operate at least one supplementary firing in the heat recovery steam generator.
Abstract:
A converter has converting groups with a first stage connected to input lines thereof and a second stage connected to output lines. The first and second stages have positive and negative branches that are connected together.
Abstract:
The damper arrangement includes a plurality of interconnected volumes and a plurality of necks for connecting the damper to a combustion chamber at a plurality of contact points. The plurality of necks are connected to the plurality of volumes.
Abstract:
A system includes a selective catalytic reactor and a bypass line. The selective catalytic reactor is located downstream of a furnace that generates flue gases. The selective catalytic reactor reduces nitrogen oxides to nitrogen. The bypass line is in fluid communication with the selective catalytic reactor. The bypass line contacts an input line to the selective catalytic reactor-, where the bypass line is adapted to handle a volume of flue gases diverted from the selective catalytic reactor. A first control damper is disposed at an inlet to the selective catalytic reactor; and a second control damper is disposed at an inlet to the bypass line. The first control damper and the second control damper interact to divide the flue gas stream between the selective catalytic reactor and the bypass line in a ratio to reduce the amount of sulfur trioxide released from the system to a desirable value.
Abstract:
A premix burner of the multi-cone type for a gas turbine, that includes a plurality of shells, which are arranged around a central burner axis and are parts of a virtual, axially extending common cone, which opens in a downstream direction, whereby the parts are displaced perpendicular to the burner axis such that a tangential slot is defined between each pair of adjacent shells. A disadvantageous transition piece between the shells and a downstream mixing tube is avoided by bordering the downstream ends of the shells by intersecting planes, which are defined by intersecting the shells with a virtual coaxial cylinder of a predetermined radius.
Abstract:
A catalytic reactor (16) is provided for purposes of effecting therewith the removal of nitrogen oxides from a process gas (F) that includes at least two catalyst bed segments (48, 50, 52), each of which is provided with a closing device (60, 62, 64). The catalytic reactor (16) is operative for causing said process gas (F) to flow through a first catalyst bed segment (48). Said process gas (F) is at a first temperature at which the sulphur trioxide that is entrained in said hot process gas is at least partially precipitated out on to the catalytic material that said first catalyst bed segment (48) embodies. Periodically said closing device (60) is operated in order to thereby isolate said first bed segment (48) from the flow therethrough of said hot process gas (F). A regeneration system (34, 36, 38) is also provided that is operative for purposes of causing a regenerating gas to flow through the first bed segment (48). In addition, a sulphur trioxide removal device (20) is provided, which is separate from said catalytic reactor (16), and which is operative for purposes of effecting therewith the removal of the sulphur trioxide from said regenerating gas.
Abstract:
A stator bar includes a substantially quadrangular conductive element made of a plurality of interwoven strands. The stator bar also includes an electric insulation applied around the conductive element and including a plurality of corners corresponding to corners of the conductive element. The electric insulation includes an inner insulation zone facing the conductive element, and an outer insulation zone surrounding the inner insulation zone. The radius of at least one of the corners is between 1.5-2.5 millimeters. Permittivity at the corners of the electric insulation decreases by 35-45% from the inner insulation zone facing the conductive element towards the outer insulation zone. The insulation includes at least one mica layer, where one of the at least one mica layer includes titanium dioxide (TiO2).