Abstract:
An OLED display and a manufacturing method of the OLED display are disclosed. The OLED display includes a first pixel, a second pixel, a third pixel, a substrate, an overcoating film formed on the substrate, and a translucent member formed on the overcoating film. The translucent member includes a multi-layered structure that includes a metal layer as the lowest layer, a first electrode is formed on the translucent member, an emission member is formed on the first electrode, and a second electrode is formed on the emission member.
Abstract:
The present invention relates to an organic light emitting display device and a method for processing image signals thereof. An organic light emitting display device according to the present invention receives a plurality of input image signals respectively corresponding to the pixels representing a first color, a second color, a third color, and a white color, and converts the input image signals of at least two dots respectively representing the first color to the third color among the input image signals according to a first extension coefficient to generate a plurality of four-color image signals of at least two dots respectively representing the first color, the second color, the third color, and the white color, to respectively sum a distortion amount of a color impression of the four-color image signals of at least two dots, to calculate a partial extension coefficient corresponding to the sum result, and to extension-convert the input image signals of at least two dot according to the partial extension coefficient thereby generating the four-color output image signals of at least two dots.
Abstract:
A method of converting image signals for a display device including six-color subpixels is provided, which includes: classifying three-color input image signals into maximum, middle, and minimum; decomposing the classified signals into six-color components; determining a maximum among the six-color components; calculating a scaling factor; and extracting six-color output signals.
Abstract:
A display device includes a color converter, a timing controller, and a display panel. The color converter converts R, G, and B data into R′, G′, B′, and W′ data. The R′, G′, B′, and W′ data includes first component data and second component data. The timing controller provides the first component data to a data driver during a first driving time and provides the second component data to the data driver during a second driving time. The data driver provides gray level display voltages corresponding to the first component data and the second component data to a data line, and the display panel displays the R′, G′, B′ and W′ data in response to the gray level display voltage. A method of driving the display device is also disclosed.
Abstract:
An organic light-emitting display device and a method of driving the display device are disclosed. A pixel circuit used in the organic light-emitting display device includes a first switching transistor, a second switching transistor and a driving transistor. The first switching transistor switches a data voltage in response to a first control signal. The second switching transistor switches a compensation voltage in response to a second control signal. The driving transistor provides an electric current to an organic light-emitting device in response to the data voltage and the compensation voltage.
Abstract:
An apparatus for converting three-color image signals to four-color image signals including a white signal comprises a data processor which generates the four-color image signals from the three-color image signals, calculates distortion values associated with conversion to the four-color image signals, and calculates scaling factors from the distortion values, the scaling factors being used to scale image signals in generating the four-color image signals. A method for operating the apparatus is also provided.
Abstract:
A liquid crystal display is provided, which includes: a plurality of pixel row groups, each pixel row group including at least one pixel row that includes a plurality of pixels arranged in a matrix and including switching elements; a plurality of gate lines connected to the switching elements and transmitting a gate-on voltage for turning on the switching elements; and a plurality of data lines connected to the switching elements and transmitting data voltages, wherein the switching elements in adjacent pixel row groups are connected to the data lines at opposite sides.
Abstract:
Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals; a gate driver for sequentially supplying scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.
Abstract:
A display device includes a plurality of gate lines transmitting gate signals wherein each gate signal has a gate-on voltage and a gate-off voltage, a plurality of data lines intersecting the gate lines and transmitting data voltages, a plurality of storage electrode lines extending in parallel to the gate lines and transmitting storage signals, a plurality of pixels arranged in a matrix wherein each pixel includes a switching element connected to a gate line and a data line, a liquid crystal capacitor connected to the switching element and a common voltage, a storage capacitor connected to the switching element and a storage electrode line, and a plurality of storage signal generators generating the storage signals based on the gate signals. The storage signal applied to each pixel has a changed voltage level immediately after the charging the data voltage into the liquid crystal capacitor and the storage capacitor is completed.
Abstract:
The present invention relates to a display device comprising a gate line; a data line insulated from the gate line and crossing the gate line; and a pixel area connected to a TFT formed at an intersection of the gate line and the data line and having a red, a green, a blue, and a white subpixels which are disposed in a 2×2 matrix, wherein one of areas of the red subpixel, the green subpixel, and the blue subpixel, and an area of the white subpixel are less than 25% of an area of the pixel area, respectively. Thus, the present invention provides a liquid crystal display to display images by properly adjusting color balance.