Abstract:
A focusing method includes the steps of calculating a diameter difference between a first circle of confusion diameter and a second circle of confusion diameter which correspond respectively to first image data and second image data associated respectively with light energy of a first spectrum and light energy of a second spectrum, generating a control signal associated with a target image distance according to an initial image distance, the diameter difference, and a lookup table, driving movement of a lens module so as to change a distance between the lens module and an image sensor from the initial image distance into the target image distance according to the control signal.
Abstract:
A method is provided to generate a 3D image using a light-field camera that includes a main lens, a micro-lens array, a light sensing component, and an image processing module. The micro-lens array forms a plurality of adjacent micro-images at different positions of the light sensing component. Each micro-image includes multiple image zones corresponding to different viewing angles. For each micro-image, the image processing module obtains image pixel values from the image zones, so as to generate camera images corresponding to different viewing angles. The image processing module combines the camera images to generate the 3D image.
Abstract:
A multi-output DC-to-DC power converter includes: a transformer having a primary winding and a secondary winding unit; a primary side control circuit used to receive a DC input voltage, and configured to control supply of the DC input voltage to said primary winding, said transformer generating an induced voltage when the DC input voltage is supplied to said primary winding; a rectifier and filter circuit used to receive the induced voltage, and configured to rectify and filter the induced voltage so as to output at least a first DC voltage; and a converting unit used to receive the first DC voltage, and configured to generate at least first and second DC output voltages based at least on the first DC voltage.
Abstract:
A resonant converter includes: a transformer including a first primary winding, a second primary winding and a secondary winding, each primary winding having a first end terminal and a second end terminal; a first switch coupled to the first end terminal of the first primary winding; a resonant inductor and a resonant capacitor connected in series between the second end terminal of the first primary winding and the first end terminal of the second primary winding; a second switch coupled between the first end terminals of the first and second primary windings; and a third switch coupled between the second end terminals of the first and second primary windings.
Abstract:
A voice coil motor array module includes a carrier, and a plurality of voice coil motors disposed on the carrier and arranged side by side in at least one row along an arrangement direction. Each voice coil motor includes a lens holder having a holder body and a coil wound around the holder body, and two magnetic components respectively disposed on two opposite sides of the holder body and having the same magnetic poles facing each other. When the coil is energized, the coil interacts with the magnetic components to drive displacement of the holder body along a direction parallel to a normal direction of a plane of the arrangement direction.
Abstract:
A battery module includes a plurality of battery units, each of which supplies electrical power to a load through a respective linear regulator. In a method for managing supply of electrical power by the battery module, a number of battery units that supply electrical power to the load is controlled according to magnitude of a current required by the load, so as to reduce power loss in the linear regulators.
Abstract:
A housing includes a housing body formed with an engaging groove and a carrier device disposed in the housing body. The carrier device includes a carrier frame and a latching assembly. The carrier frame is configured to carry an electronic component and includes a pivoting sidewall rotatably pivoted to the housing body. The carrier frame is rotatable between a first position, where the carrier frame is disposed in the housing body, and a second position, where the carrier frame is pivoted out of the housing body. The latching assembly is disposed on the pivoting sidewall and is releasably engaged to the engaging groove so as to position the carrier frame at the second position.
Abstract:
An image capturing device includes at least one lens unit and an image sensor. The at least one lens unit includes a main lens, a first reflective lens and a second reflective lens. The first reflective lens has a first reflective surface that is configured to receive light which passes through the main lens into the image capturing device. The second reflective lens has a second reflective surface that is configured to receive light reflected from the first reflective surface. The image sensor is configured to receive and sense light reflected from the second reflective surface. The second reflective surface and the first reflective surface are non-parallel to each other.
Abstract:
A voltage control method for a power converter includes: acquiring a current of a first primary side winding of a transformer circuit of the power converter; integrating the acquired current to obtain an average voltage; comparing the average voltage with a reflected voltage associated with a current of a secondary side winding of the transformer circuit; and adjusting a duty cycle of a switch of the power converter based on an obtained comparison result for adjustment of an output voltage of the power converter.
Abstract:
A housing is capable of dissipating heat, and includes a housing body constituted of a plurality of walls, an orientation detecting unit for detecting orientation of the housing body and generating a detection signal for indicating the orientation of the housing body, a fan mounted at an opening in one of the walls, and a controller coupled to the orientation detecting unit and the fan. The controller is configured to determine which one of the walls is on the top of the housing body according to the detection signal received from the orientation detecting unit, and to control operation of the fan for causing an upward air flow within the housing body towards the wall on the top of the housing body.