Abstract:
This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
Abstract:
Vehicle event recorders are arranged with integrated web servers to provide a simple user interface and control mechanism which may be address with commonly available hardware and software. A vehicle event recorder of these inventions couples to a network having a workstation node. The workstation having either of the many available web browsers can be used to view, address, control, perform data transfer, et cetera, by way of data exchange in accordance with simple IP protocols. A vehicle equipped with these systems returns to a household to make a network connection. A local server is used to see all exposed system controls as provided by predefined web pages provided by a web server integrated as part of the vehicle event recorder unit.
Abstract:
This disclosure relates to a system and method for detecting and recording rail vehicle events. The system comprises one or more cameras, one or more sensors, non-transient electronic storage, one or more physical computer processors, and/or other components. The one or more cameras may be configured to acquire visual information representing a rail vehicle environment. The one or more sensors may be configured to generate output signals conveying operation information related to operation of the rail vehicle. The non-transient electronic storage may be configured to store electronic information. The one or more physical computer processors may be configured to detect rail vehicle events based on the output signals and facilitate electronic storage of the visual information and the operation information for a period of time that includes the rail vehicle event in the non-transient electronic storage.
Abstract:
Vehicle event recorder systems are arranged to be in constant communication with remote servers and administrators via mobile wireless cellular networks. Vehicle event recorders equipped with video cameras capture video and other data records of important events relating to vehicle use. These data are then transmitted over special communications networks having very high coverage space but limited bandwidth. A vehicle may be operated over very large region while maintaining continuous communications connections with a remote fixed server. As such, systems of these inventions may be characterized as including a mobile unit having: a video camera; a microprocessor; memory; an event trigger; and mobile wireless transceivers, and a fixed network portion including: mobile wireless cellular network, a protocol translation gateway, the Internet and an application-specific server.
Abstract:
Data transfer systems for vehicle event recorders are provided as: a vehicle event recorder, a vehicle event recorder resident memory, and upload module in conjunction with, a communication port suitable for coupling with, a portable memory device, a server computer datastore, a server download module in conjunction with, a similar cooperating communications port. The portable memory device is arranged to operably couple with the communications ports of both the vehicle event recorder and the server computer and to be repeatedly moved between the two. The upload/download modules are arranged to transfer data to/from the portable memory in an orderly fashion in which no files are removed from the vehicle event recorder resident memory without first having been successfully transferred to the server computer datastore.
Abstract:
Data transfer systems for vehicle event recorders are provided as: a vehicle event recorder, a vehicle event recorder resident memory, and upload module in conjunction with, a communication port suitable for coupling with, a portable memory device, a server computer datastore, a server download module in conjunction with, a similar cooperating communications port. The portable memory device is arranged to operably couple with the communications ports of both the vehicle event recorder and the server computer and to be repeatedly moved between the two. The upload/download modules are arranged to transfer data to/from the portable memory in an orderly fashion in which no files are removed from the vehicle event recorder resident memory without first having been successfully transferred to the server computer datastore.
Abstract:
This disclosure relates to a system that generates data describing physical surroundings of vehicles during operation. Individual vehicles carry sensors configured to generate output signals conveying information related to one or both of the physical surroundings of the vehicles and/or the operation of the vehicles. Based on the generated output signals, the physical surroundings in which the first vehicle is operating are derived, such as, for example, the speeds of different nearby vehicles, and their distances to each other.
Abstract:
Systems and methods for using risk profiles for fleet management of a fleet of vehicles are disclosed. Fleet management may include determining the performance levels of particular vehicle operators. The risk profiles characterize values representing likelihoods of occurrences of vehicle events. The values are based on vehicle event information for previously detected vehicle events. Exemplary implementations may: receive, from a particular vehicle, particular vehicle event information for particular vehicle events that have been detected by the particular vehicle; determine one or more metrics that quantify a performance level of the particular vehicle operator, based on the risk profiles; compare the one or more metrics for the particular vehicle operator with aggregated metrics that quantify performance levels of a set of vehicle operators; and store, transfer, and/or present results of the comparison.
Abstract:
Systems and methods for using risk profiles for creating and deploying new vehicle event definitions to a fleet of vehicles are disclosed. Exemplary implementations may: obtain a first risk profile, a second risk profile, and vehicle event characterization information; select individual ones of the previously detected vehicle events that have one or more characteristics in common; determine circumstances for at least a predefined period prior to occurrences of the selected vehicle events; create a new vehicle event definition based on the determined set of circumstances; distribute the new vehicle event definition to individual vehicles in the fleet of vehicles; and receive additional vehicle event information from the individual vehicles in the fleet of vehicles.
Abstract:
This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.