摘要:
Tail-biting turbo code for arbitrary number of information bits. A novel means is presented in which, for most cases, no extra symbols at all need to be padded to an input sequence to ensure that a turbo encoder operates according to tail-biting (i.e., where the beginning and ending state of the turbo encoder is the same). In a worst case scenario, only a single symbol (or a single bit) needs to be padded to the input sequence. Herein, all of the input bits of the input sequence are interleaved within the turbo encoding. In the instance where the at most one symbol (or at most one bit) needs to be padded to the input sequence, then that at most one symbol (or one bit) is also interleaved within the turbo encoding. Moreover, any size of an input sequence can be accommodated using the means herein to achieve tail-biting.
摘要:
Turbo decoder employing ARP (almost regular permutation) interleave and arbitrary number of decoding processors. A novel approach is presented herein by which an arbitrarily selected number (M) of decoding processors (e.g., a plurality of parallel implemented turbo decoders) be employed to perform decoding of a turbo coded signal while still using a selected embodiment of an ARP (almost regular permutation) interleave. The desired number of decoding processors is selected, and very slight modification of an information block (thereby generating a virtual information block) is made to accommodate that virtual information block across all of the decoding processors during all decoding cycles except some dummy decoding cycles. In addition, contention-free memory mapping is provided between the decoding processors (e.g., a plurality of turbo decoders) and memory banks (e.g., a plurality of memories).
摘要:
Multi-CSI (Cyclic Shifted Identity) sub-matrix based LDPC (Low Density Parity Check) codes. A CSI parameter set, that includes at least one dual-valued entry and may also include at least one single-valued entry, and/or at least one all-zero-valued entry, is employed to generate an LDPC matrix. One of the single-valued entries may be 0 (being used to generate a CSI matrix with cyclic shift value of 0, corresponding to an identity sub-matrix such that all entries along the diagonal have elements values of 1, and all other elements therein are 0). Once the LDPC matrix is generated, it is employed to decode an LDPC coded signal to make an estimate of an information bit encoded therein. Also, the LDPC matrix may itself be used as an LDPC generator matrix (or the LDPC generator matrix may alternatively be generated by processing the LDPC matrix) for use in encoding an information bit.
摘要:
Virtual limited buffer modification for rate matching. A reduced-size memory module is employed within a communication device to assist in storage of log-likelihood ratios (LLRs) employed in accordance with turbo decoding. This architecture is also applicable to other types of error correction code (ECC) besides turbo code as well. The memory size is selected to match the number of coded bits (e.g., including information bits and redundancy/parity bits) that is included within a transmission. The received signals may be various transmissions made in accordance with hybrid automatic repeat request (HARQ) transmissions. When the LLRs calculated from a first HARQ transmission is insufficient to decode, those LLRs are selectively stored in the memory module. When LLRs corresponding to a second HARQ transmission is received, LLRs corresponding to both the first HARQ transmission and the second HARQ transmission are passed from the memory module for joint use in decoding.
摘要:
Virtual limited buffer modification for rate matching. A reduced-size memory module is employed within a communication device to assist in storage of log-likelihood ratios (LLRs) employed in accordance with turbo decoding. This architecture is also applicable to other types of error correction code (ECC) besides turbo code as well. The memory size is selected to match the number of coded bits (e.g., including information bits and redundancy/parity bits) that is included within a transmission. The received signals may be various transmissions made in accordance with hybrid automatic repeat request (HARQ) transmissions. When the LLRs calculated from a first HARQ transmission is insufficient to decode, those LLRs are selectively stored in the memory module. When LLRs corresponding to a second HARQ transmission is received, LLRs corresponding to both the first HARQ transmission and the second HARQ transmission are passed from the memory module for joint use in decoding.
摘要:
Tail-biting turbo coding to accommodate any information and/or interleaver block size. The beginning and ending state of a turbo encoder can be made the same using a very small number of dummy bits. In some instances, any dummy bits that are added to an information block before undergoing interleaving are removed after interleaving and before transmission of a turbo coded signal via a communication channel thereby increasing throughput (e.g., those dummy bits are not actually transmitted via the communication channel). In other instances, dummy bits are added to both the information block that is encoded using a first constituent encoder as well as to an interleaved information block that is encoded using a second constituent encoder.
摘要:
Address generation for contention-free memory mappings of turbo codes with ARP (almost regular permutation) interleaves. A novel means is presented by which anticipatory address generation is employed using an index function that is based on an address mapping which corresponds to an interleave inverse order of decoding processing (π−1). In accordance with parallel turbo decoding processing, instead of performing the natural order phase decoding processing by accessing data elements from memory bank locations sequentially, the accessing of addresses is performed based on the index function that is based on an mapping and the interleave (π) employed within the turbo coding. In other words, the accessing data elements from memory bank locations is not sequential for natural order phase decoding processing. The index function also allows for the interleave (π) order phase decoding processing to be performed by accessing data elements from memory bank locations sequentially.
摘要:
Turbo decoder employing ARP (almost regular permutation) interleave and arbitrary number of decoding processors. A novel approach is presented herein by which an arbitrarily selected number (M) of decoding processors (e.g., a plurality of parallel implemented turbo decoders) be employed to perform decoding of a turbo coded signal while still using a selected embodiment of an ARP (almost regular permutation) interleave. The desired number of decoding processors is selected, and very slight modification of an information block (thereby generating a virtual information block) is made to accommodate that virtual information block across all of the decoding processors during all decoding cycles except some dummy decoding cycles. In addition, contention-free memory mapping is provided between the decoding processors (e.g., a plurality of turbo decoders) and memory banks (e.g., a plurality of memories).
摘要:
Register exchange network for radix-4 SOVA (Soft-Output Viterbi Algorithm). Two trellis stages are processed simultaneously and in parallel with one another (e.g., during a single clock cycle) thereby significantly increasing data throughput. Any one or more modules within an REX (Register Exchange) module are implemented using a radix-4 architecture to increase data throughput. Any one or more of a SMU (Survivor Memory Unit), a PED (Path Equivalency Detector), and a RMU (Reliability Measure Unit) are implemented in accordance with the principles of radix-4 decoding processing.
摘要:
Tail-biting turbo coding to accommodate any information and/or interleaver block size. A means is presented by which the beginning and ending state of a turbo encoder can be made the same using a very small number of dummy bits. In some instances, any dummy bits that are added to an information block before undergoing interleaving are removed after interleaving and before transmission of a turbo coded signal via a communication channel thereby increasing throughput (e.g., those dummy bits are not actually transmitted via the communication channel). In other instances, dummy bits are added to both the information block that is encoded using a first constituent encoder as well as to an interleaved information block that is encoded using a second constituent encoder.