摘要:
Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.
摘要:
There are provided novel methods of fabricating batteries, particularly rechargeable lithium ion batteries comprising a microporous polymeric gel layer on one or more electrodes of the batteries. The methods include laminating a gellable polymer film to at least one electrode and forming a microporous gellable polymer layer from the laminated film on the electrode. The microporous gellable polymer layer can be produced by extracting plasticizer from the polymer with a solvent. The polymeric gel on the electrode can be formed by exposing the microporous gellable polymer layer to an electrolyte solution which includes a lithium salt.
摘要:
A housing for a battery comprising a laminate made of a plurality of layers is provided. The battery housing has at least a barrier layer, typically two metal foils, and a sealing layer, which is intended to be in contact with the contents of a battery. Additionally, the battery housing can further include a protective layer over the barrier layer. Suitable materials for the sealant layer and barrier layers include polymers. Preferably, the laminate battery housing is flexible, although this is not required. The sealant layer, barrier layer and protective layer may also be adhesively attached. The battery housing of the present invention can also provide moisture and acid absorbers in various configurations.
摘要:
A positive electrode active material for high voltage lithium battery which is represented by general formula LixMn2−yMyO4 LixMn2−yMyO4 (M: a 2-valency metal (Ni, Co, Fe, Mg, Zn), with 0.45≦y≦0.60, 0≦x≦1) having cubic spinel structure of lattice constant within 8.190 angstrom. Such an active material is manufactured by employing sol-gel process wherein one of inorganic salt, hydroxide and organic acid salt of lithium or a mixture of these for Li, one of inorganic salt and organic acid salt of manganese or a mixture of these for Mn, and one of inorganic salt and organic acid salt of the selected metal or a mixture of these for M are used as the starting materials for synthesis, ammonia water is added to the solutions of these starting materials in alcohol or water to obtain gelatinous material and the gelatinous material thus obtained is fired.
摘要:
An inexpensive positive electrode active material for lithium batteries which comprises lithium manganate having a hexagonal layered structure with space group of R3m and exhibits continuous discharge voltage characteristics between 4.5 V and 2 V for metallic lithium.
摘要:
A method for manufacturing positive a electrode active material for a lithium battery represented by general formula Li.sub.x Mn.sub.2-y M.sub.y O.sub.4 (M: a 2-valency metal, 0.45.ltoreq.y.ltoreq.0.60, 1.ltoreq.x.ltoreq.2.1) having cubic spinel structure of and a lattice constant within 8.190 angstroms by employing a solid phase reaction, comprising the steps of firing a lithium compound, a manganese compound and a metal M compound and refiring the fired material after pressurizing it at least once to remove a metal M oxide.