Abstract:
An digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume so as to support pass-through and presentation modes of digital imaging at a point of sale (POS) environment. Each station includes an illumination subsystem having a linear illumination array including a plurality of light emitting devices for producing a planar illumination beam (PLIB), and an image formation and detection subsystem including a linear image sensing array having optics providing a field of view (FOV) on the linear image detection array, and extending substantially along the PLIB. A plurality of coplanar illumination and imaging planes (PLIB/FOVs) are formed and projected through the imaging window and into the 3D imaging volume, for capturing linear (1D) digital images of objects moving through the 3D imaging volume. Each station includes an automatic illumination control subsystem for controlling the production of illumination by the illumination subsystem into the 3D imaging volume, as an object is detected moving within the 3D imaging volume.
Abstract:
A digital image capturing and processing system comprising a system housing having an imaging window, a plurality of coplanar illumination and imaging subsystems disposed in the system housing. Each coplanar illuminating and linear imaging station includes a dual-type coplanar linear illumination and imaging engine that supports automatic image formation and detection along each pair of coplanar illumination and imaging planes generated by the coplanar illuminating and linear imaging station. Each pair of coplanar illumination and imaging planes are projected into the 3D imaging volume, for capturing of linear digital images of objects moved therewithin, and subsequent processing thereof for recognizing information graphically represented in the captured linear digital images, and automatic imaging-processing based object motion and velocity detection within the 3D imaging volume.
Abstract:
Digital image capturing and processing system comprising a digital image capturing and processing module, and an integrated electronic weigh scale module having a load cell that is centrally located with respect to the digital image capturing and processing module. The digital image capturing and processing module electrically interfaces with the electronic weigh scale module by way of touch-fit electrical inter-connectors that automatically establish all electrical interconnections between the two modules when the digital image capturing and processing module is placed onto the electronic weigh scale module, and the electronic load cell bears the weight of the digital image capturing and processing module.
Abstract:
A method for intelligently controlling the illumination and imaging of objects while being moved through a 3D imaging volume. As an object is being moved within the 3D imaging volume of a digital image capturing and processing system projecting a plurality of field of views (FOVs) through the 3D imaging volume, and prior to illumination and imaging. A projected trajectory is determined for the object through the 3D imaging volume. The FOVs which intersect with the projected trajectory of the object, passing through said 3D imaging volume, are determined. Only the determined FOVs are selectively illuminated as the object is moved along its projected trajectory through the FOVs, while digital linear images of the object are formed and detected, for storage and subsequent processing of information graphically represented in the digital linear images.
Abstract:
An automatic digital imaging-based code symbol reading system supporting a presentation-type mode of system operation, a multi-tier modular software architecture, automatic illumination control and video image capture and processing techniques. By virtue of the present invention, the automatic digital imaging-based code symbol reading system ensures the reliable reading of 1D and/or 2D code symbols graphically represented in digital images captured in demanding point-of-sale and other environments.
Abstract:
An automatic digital-imaging based code symbol reading system supporting pass-through and presentation modes of system operation, automatic object direction detection and illumination control, and video image capture and processing techniques. By virtue of the present invention, the automatic digital-imaging based code symbol reading system ensures the reliable reading of code symbols graphically represented in digital images in high-throughput point-of-sale and other environments.
Abstract:
An automatic digital-imaging based code symbol reading system supporting pass-through and presentation modes of system operation, automatic object direction detection and illumination control, and video image capture and processing techniques. By virtue of the present invention, the automatic digital-imaging based code symbol reading system ensures the reliable reading of code symbols graphically represented in digital images, in high-throughput point-of-sale and other environments.
Abstract:
A bioptical laser scanning system at a point of sale (POS) station, that generates and projects a first plurality of laser scanning planes through a horizontal-scanning window, and a second plurality of laser scanning planes through a vertical-scanning window. The first and second pluralities of laser scanning planes intersect within predetermined scan regions contained within a 3-D scanning volume defined between the horizontal-scanning and vertical-scanning windows, and generate a plurality of groups of intersecting laser scanning planes within the 3-D scanning volume. The plurality of groups of intersecting laser scanning planes form a complex omni-directional 3-D laser scanning pattern within the 3-D scanning volume capable of scanning a bar code symbol located on the surface of any object, including a six-sided rectangular box-shaped object, presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide six-sided 360-degree omni-directional bar code symbol scanning coverage at said POS station.
Abstract:
A bioptical holographic laser scanning system employing a plurality of laser scanning stations about a holographic scanning disc having scanning facets with high and low elevation angle characteristics, as well as positive, negative and zero skew angle characteristics which strategically cooperate with groups of beam folding mirrors having optimized surface geometry characteristics. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generate a 3-D omnidirectional laser scanning pattern between the bottom and side scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of pairs of quasi-orthogonal laser scanning planes, which include a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder-type bar code symbols) that are oriented substantially horizontal with respect to the bottom scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom scanning window.
Abstract:
A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an coplanar illumination and imaging station for projecting at least one coplanar illumination and imaging plane into a imaging volume during object illumination and imaging operations. The coplanar illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible VLDs, and producing a second field of invisible illumination from an array of infrared (IR) laser diodes (IR-LDs). wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coplanar with the FOV of the linear image sensing array. An automatic object detection subsystem automatically detects an object moving through the imaging volume, while an illumination control subsystem controls the relative power ratio (VIS/IR) of visible illumination and invisible illumination during system operation so as to minimize the amount of visible illumination energy required to capture sufficiently high-contrast images of said objects and successfully process the same.