Abstract:
Increased Rdc in electrochemical cells is detrimental because under high rate discharge regimes, such as used in powering an implantable cardiac defibrillator (ICD), the amount of energy delivered by the cell over a given period of time is lower as Rdc increases. This reduction in delivered energy results in a longer period of time needed to fully charge the ICD capacitors so that it takes longer to deliver the necessary therapy. Further, an industry recognized standard is to pulse discharge cell about every 90 days to charge the capacitors in the ICD to or near their maximum energy breakdown voltage to heal microfractures that can occur in the capacitor dielectric oxide. However, the present invention requires initiation of more frequent current pulsing upon the detection of an increase in Rdc or charge time. This is even though the Rdc measurement may be below some threshold reading. More frequent pulsing is beneficial for reducing irreversible Rdc growth in the cell, which typically occurs in middle-of-life from about 25% to 70% depth-of-discharge.
Abstract:
A titanium substrate having a thickened outer oxidation layer provided thereon by a treatment process performed either in an air atmosphere at elevated temperatures or through electrolytic oxidation (anodization), is discribed. The thusly conditioned titanium substrate serving as a cathode current collector for an electrode incorporated into an electrochemical cell exhibits improved electrical performance in comparison to the prior art techniques, i.e., electrically conducted carbon coated titanium screen and use of highly corrosion resistant materials, upon subsequent elevated temperature exposure.
Abstract:
An oxygen plasma process for treating a dielectric oxide layer, particularly an anodic oxide, subsequent to its incorporation into an electrolytic capacitor is described. The present treatment reduces DC leakage and improves shelf life stability of the resulting capacitor in comparison to anodic oxides treated in a conventional manner. This is important for critical applications such as implantable cardioverter defibrillators where capacitor charging time and charge/discharge energy efficiency are critical.
Abstract:
A filter capacitor comprising a substrate of at least one layer of a low temperature co-fires ceramic (LTCC) tape supporting alternating active and ground electrode layers segregated by a dielectric layer is described. The substrate is preferably a laminate of three LTCC tapes pieces that are heated under pressure and at a relatively low temperature to become a laminate that maintains its shape and structure dimensions even after undergoing numerous sintering steps. Consequently, relatively thin active and ground electrode layers along with the intermediate dielectric layer can be laid down or deposited on the LTCC substrate by a screen-printing technique. A second laminate of LTCC tapes is positioned on top of the active/dielectric/ground layers to finish the capacitor. Consequently, a significant amount of space is saved in comparison to a comparably rated capacitor or, a capacitor of a higher rating can be provided in the same size as a conventional prior art capacitor.
Abstract:
Ferrules made of nano-titanium for incorporation into feedthrough filter capacitor assemblies are described. The feedthrough filter capacitor assemblies are particularly useful for incorporation into implantable medical devices such as cardiac pacemakers, cardioverter defibrillators, and the like, to decouple and shield internal electronic components of the medical device from undesirable electromagnetic interference (EMI) signals. Nano-titanium experiences significantly less grain growth after high temperature brazing in comparison to commercially pure (CP) titanium and the titanium alloy Ti-6Al-4V. For that reason, nano-titanium is an ideal material for use in implantable medical applications where high strength, structural integrity even after heating and corrosion resistance are desired.
Abstract:
Ferrules made of nano-titanium for incorporation into feedthrough filter capacitor assemblies are described. The feedthrough filter capacitor assemblies are particularly useful for incorporation into implantable medical devices such as cardiac pacemakers, cardioverter defibrillators, and the like, to decouple and shield internal electronic components of the medical device from undesirable electromagnetic interference (EMI) signals. Nano-titanium experiences significantly less grain growth after high temperature brazing in comparison to commercially pure (CP) titanium and the titanium alloy Ti-6Al-4V. For that reason, nano-titanium is an ideal material for use in implantable medical applications where high strength, structural integrity even after heating and corrosion resistance are desired.
Abstract:
An anode-cathode sub-assembly for an electrochemical cell wherein a combination of an elongated alkali metal anode and elongated solid cathode within separator therebetween is wound using a mandrel to form the sub-assembly having a jellyroll type configuration and wherein the winding is performed in a manner so that upon removal of the mandrel from the completed sub-assembly, in the event any portion of the separator contacted by the mandrel is impaired, this will not cause an electrical short circuit in an electrochemical cell containing the sub-assembly.
Abstract:
An electrochemical cell comprising a medium rate electrode region intended to be discharged under a substantially constant drain and a high rate electrode region disposed in a jellyroll wound configuration intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electrolyte.
Abstract:
A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one nitrate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an organic alkyl nitrate compound.
Abstract:
A power source including two alkali metal/transition metal oxide cells discharged in parallel to power an implantable medical device is described. The first cell powers the medical device in both a device monitoring mode, for example in a cardiac defibrillator for monitoring the heart beat, and a device actuation mode for charging capacitors requiring high rate electrical pulse discharging. At such time as the first cell is discharged to a predetermined voltage limit, the first cell is disconnected from pulse discharge duty and only used for the device monitoring function. At that time, the second cell is utilized for the high rate electrical pulse discharging function. When the first cell reaches 100% efficiency or a present voltage limit, the second cell then takes over both device monitoring and device actuation functions. In that manner, a greater average discharge efficiency is realized from the two cells than is capable of being delivered from a single cell of similar chemistry.