Abstract:
Method and system for reducing the power consumption in mobile networks, wherein the communication between a mobile terminal and a base station is QAM modulated. The method comprises: making the base station a dynamic real time analysis of the QAM symbols used in the communication between said mobile terminal and the base station, detecting the most frequently used QAM symbols; obtaining the base station a new assignation of the QAM symbols for the downlink communication; sending the base station the new assignation of the QAM symbols to the mobile terminal; using the mobile terminal and the base station said new assignation of the QAM symbols for the demodulation process and modulation process, respectively, in their subsequent communication.
Abstract:
A control unit generates packet signals while controlling an interface (IF) unit, a modulation unit and a baseband processing unit. While dividing each packet signal into a plurality of partial periods, the control unit assigns data to at least part of each of the plurality of partial periods and sets the rate of data, for a partial period placed anterior to each packet signal, higher than that for a partial period placed posterior to the each packet signal. The IF unit, the modulation unit and the baseband processing unit transmit the packet signals thus generated.
Abstract:
Soft decision sections (503, 506) provisionally decide each modulated signal (502, 505) separated using an inverse matrix calculation of a channel fluctuation matrix at separation section (501). Signal point reduction sections (508, 510, 514, 516) reduce candidate signal points of a multiplexed modulated signal using the provisional decision results (504, 507). Soft decision sections (512, 518) make a correct decision using the reduced candidate signal points and obtain received data (RA, RB) of each modulated signal. This allows received data RA, RB with a good error rate characteristic to be obtained with a relatively small number of calculations without reducing data transmission efficiency.
Abstract:
In a symbol mapping apparatus, a channel coder outputs a codeword including a plurality of information bits and a plurality of redundancy bits by encoding transmission data. A symbol mapper maps the codeword to the symbol while changing a mapping scheme in the unit of the codeword.
Abstract:
Soft decision sections (503, 506) provisionally decide each modulated signal (502, 505) separated using an inverse matrix calculation of a channel fluctuation matrix at separation section (501). Signal point reduction sections (508, 510, 514, 516) reduce candidate signal points of a multiplexed modulated signal using the provisional decision results (504, 507). Soft decision sections (512, 518) make a correct decision using the reduced candidate signal points and obtain received data (RA, RB) of each modulated signal. This allows received data RA, RB with a good error rate characteristic to be obtained with a relatively small number of calculations without reducing data transmission efficiency.
Abstract:
Method and system for reducing the power consumption in mobile networks, wherein the communication between a mobile terminal and a base station is QAM modulated. The method comprises: making the base station a dynamic real time analysis of the QAM symbols used in the communication between said mobile terminal and the base station, detecting the most frequently used QAM symbols; obtaining the base station a new assignation of the QAM symbols for the downlink communication; sending the base station the new assignation of the QAM symbols to the mobile terminal; using the mobile terminal and the base station said new assignation of the QAM symbols for the demodulation process and modulation process, respectively, in their subsequent communication.
Abstract:
The present invention provides a method for enhancing reliability of information transmission, comprising the steps of: (a) establishing a matrix based on the length of bits of valid information in frame time slots; and creating a new matrix by presetting Error Correction Coding (ECC) for rows and columns of said matrix; (b) adopting the 1st Interleaving method to re-allocate bits which have been processed twice by using said ECC in said new matrix, to both ends of said frame time slots; and (c) adopting the 2nd Interleaving method to re-allocate the remaining bits in said new matrix to the middle of said frame time slots. After processed like this, the anti-interfering ability of the bits at both ends of TDMA frame time slot can be significantly enhanced, and the bit-error rate is decreased most, and all redundancy bits of Hamming codes can be arrayed at both ends of TDMA frame time slot.
Abstract:
A method for processing a stream of a digital broadcast receiver is provided. The method which processes a stream that is divided into a first area allocated to first mobile data and a second area allocated to normal data, includes: receiving a transport stream including new mobile data in at least a part of the second area separately from the first mobile data, demodulating the transport stream, equalizing the demodulated transport stream, and decoding at least one of the first mobile data and the new mobile data from the equalized transport stream. Accordingly, mobile data services may be provided in various ways.
Abstract:
An information processing apparatus includes: a coding mechanism for generating hierarchical data hierarchized in descending order of importance with respect to resolution from image data, and coding the hierarchical data for each hierarchy; and a redundancy coding mechanism for blocking the hierarchical data for each of the hierarchies using a block size determined for each of the hierarchies on the basis of dependencies of the hierarchies between pieces of the hierarchical data generated by the coding mechanism or between the hierarchical data and the image data, and performing redundancy coding to generate redundant data of the hierarchical data for each of the blocks.
Abstract:
A method is provided for accommodating periodic interfering signals in a wireless network. In this method, a network scans a transmission medium to locate any interfering signals. If it finds interfering signals, the scan determines their period, and the network alters the period of its superframes such that: either the period of the superframes is equal to the period of the interfering signals; the period of the superframes is an integer multiple of the period of the interfering signals; or the period of the interfering signals is an integer multiple of the period of the superframes. The network then alters the position of the superframes relative to the position of the interfering signals to arrange things such that no portion of the interfering signal interferes with a superframe beacon, such that that a maximum amount of contiguous channel time is provided in each superframe, or both.