Abstract:
A system and method transcodes an input video bit stream having a first encoding profile into an output video bit stream having a second encoding profile. The system includes a first module (302) and a second module (306). The system further includes a memory module (304). The first module (302) decodes the input video bit stream for generating pixel data and macroblock specifications. The second module (306) encodes the pixel data and the macroblock specifications for constructing the output video bit stream. The memory module (304) includes a first buffer module and a second buffer module. The first buffer module stores the pixel data and the second buffer module stores the macroblock specifications.
Abstract:
A method and a circuit for measuring an on chip duty cycle. The circuit includes a capacitor, a switching circuit, a current source, a comparator circuit and a counter. The circuit receives a first clock signal and a second clock signal. The first clock signal has a 50% duty cycle and the second signal has an unknown duty cycle signal. The switching circuit first receives the first clock signal and then the second clock signal for measuring the duty cycle. The comparator circuit compares a comparator voltage with a reference voltage for the first clock signal to measure a first elapsed cycle using the counter. The comparator circuit again compares a comparator voltage with a reference voltage for the second clock signal to measure a second elapsed cycle using the counter. The counter measures the first elapsed cycle and the second elapsed cycle corresponding to the first clock signal and the second clock signal for a duration in which the comparator voltage equals the reference voltage. The duty cycle for the second clock signal is then calculated using the first elapsed cycle and the second elapsed cycle.
Abstract:
A semiconductor memory device having a control circuit, decoder circuit, a dummy column, and a normal memory cell array divided in clusters of N consecutive rows, where N can be one or more than one, and for each cluster of N rows a common circuitry is used in block with a dummy bit line connected to the dummy column and to a timing circuit. A normal bit line connected to the normal memory cells provides the read normal bit to input/output logic. Whenever a normal memory cell is accessed during the read operation, the circuitry of the corresponding dummy row enables the dummy bit line to discharge, and when the voltage across the dummy bit line reaches a predetermined value, the timing circuit produces a timing signal to activate the input/output circuitry to read the data stored in the accessed memory cell.
Abstract:
A sense amplifier circuit provides for high speed sensing with a high speed read operation, with a low capacitance and a low resolution time. The sense amplifier circuit includes a latch circuit having a first inverter circuit and a second inverter circuit cross coupled with each other. The amplifier circuit includes a first discharge device and a second discharge device operatively coupled to the first inverter circuit and the second inverter circuit respectively. The amplifier circuit further includes a first PMOS transistor operatively coupled between the first discharge device and a bit line, and a second PMOS transistor operatively coupled between the second discharge device and a complementary bit line. The amplifier circuit further includes a first NMOS transistor operatively coupled between the first discharge device and a ground voltage, a second NMOS transistor operatively coupled between the second discharge device and the ground voltage. The amplifier further includes a pull down circuit and a delay circuit. The delay circuit produces delay between two control signals. The circuit includes a first NOT gate and a second NOT gate operatively coupled to a first latch output node and a second latch output node respectively to provide an output data corresponding to a data stored in a memory cell.
Abstract:
A boundary scan tester is provided for testing logic devices. The boundary scan tester includes a boundary scan register, a data decompressor, a data compressor, and a derived boundary scan register. The boundary scan register registers the applied test vectors and test responses of a logic device, and the data decompressor is coupled to an input of the boundary scan register for decompressing the applied compressed test vectors. The data compressor is coupled to an output of the boundary scan register for compressing the test responses, and the derived boundary scan register is coupled to an input of the decompressor and an output of the compressor for storing and shifting in/out the compressed test vectors and test responses.
Abstract:
A logic device operates with reduced leakage current. Controllability is achieved by using a reference voltage to control the amount of leakage reduction. A method of temperature dependent reference voltage generation is given which maintains virtual supply in acceptable range to provide sufficient noise margin in logic devices including memory cells.
Abstract:
A continuous time common mode feedback module is capable of operating in a wide range of input voltages. The common mode feedback module includes a common mode detector and an amplifier for computing and amplifying the difference of a reference voltage and a common mode voltage of a first input signal and a second input signal. The common-mode feedback module includes a common mode resolver and a control voltage generating module coupled to each other to provide a common mode feedback voltage. The common mode feedback module provides a good linearity and a wide bandwidth, without compensation requirements. The common mode feedback module also provides small process corner dependence of bias current and a common mode offset.
Abstract:
Embodiments of the present invention provide level shifter circuits capable of high frequency operations. The level shifter circuit utilizes a dynamic charge injection device, which diminishes a capacitive coupling effect between a gate and a drain of input NMOS devices, when the input signal switches from a high logic level to a low logic level. The dynamic charge injection device is incorporated at output nodes to provide initial thrust to the level shifter circuits, which triggers a positive regenerative feedback of cross-coupled pull up PMOS devices enabling a rapid transition and hence the high frequency operation.
Abstract:
A digital radio frequency (RF) modulator provides modulation for base-band TV signals. The RF modulator provides direct conversion of digital base-band audio and video signals to a desired RF channel frequency, without any analog up conversion. The RF modulator includes an audio module, a video module, and a RF converter. The audio module includes a pre-emphasis filter, a multi-stage audio interpolator and a complex frequency modulator to generate frequency modulated (FM) audio signals. The video module includes a complex VSB filter, a group-delay compensation filter and some processing logic to generate a filtered output video signal. The RF converter includes a complex adder, a complex multiplier and a RF interpolator to construct the base band TV signals and to shift the base band TV signals in a frequency domain to the desired RF channel frequency. The exponential video carrier is generated at baseband and has a frequency whose value is in the range of +/− 13.5 MHz. The RF interpolator includes a zero pad logic followed by a quadrature band pass filter (BPF), and an optional second stage of another zero-pad logic followed by a real band pass filter (BPF). The second stage is optional in the sense that it is required only if the desired RF channel is in the higher VHF band.
Abstract:
A system and method of making a firmware self updatable depending on option information stored in a configuration module. The configuration module can either be in a memory device or a memory controller. The self-updation flexibility can be achieved by customizing the options as per the customer's requirements and can be done either through an USB interface or by pre-programming the configuration module or any other communication or programming options. The option information is provided by using a configurable module inside either the memory or the memory controller. After the basic initialization operations, the firmware reads the option information from the controller itself or any other non-volatile memory and performs the tasks to enhance the overall performance.