Abstract:
The invention relates to a device for moving a moving furniture component, mounted in or on a piece of furniture, in particular, a drawer or door, comprising a closing device for retracting the moving furniture component into a closed end position in or on the piece of furniture, whereby the closing device comprises a driver, for driving the moving furniture component and an energy store, in particular, at least one spring, for tensioning the driver, whereby the device comprises an electric motor for powering the driver.
Abstract:
In an operating device for operating body components of a vehicle, it is provided, with a view to obtaining simple automatic operation as well as unrestricted manual operation, that an electromechanical drive unit comprises at least one drivable first stop element and a power transmission unit at least one second stop element which is connected to the body component, the stop elements being able to bear against each other for transmission of an operation power in a direction of power transmission and to be spaced from each other for uncoupling the drive unit from the power transmission unit in the direction of power transmission. There is no need for any electromechanical coupling for uncoupling purposes.
Abstract:
A system for raising and lowering a sectional overhead door between an open position and a closed position including, a counterbalance system adapted to be connected to the door, an operator motor assembly mounted proximate to the sectional overhead door in the closed position of the sectional overhead door, at least a portion of the operator motor assembly movable between a door operating position and a door locking position, and a locking assembly (370) having an engaged position to hold the motor assembly in the operating position and a disengaged position to release the motor assembly allowing it to move to the door locking position. The system may be provided with a remote light assembly having a switchable light source in sensing communication with the operator motor such that operation of the motor activates the light source. The system is further provided with a handle assembly (515) operatively engaging the motor assembly (40) and counterbalance system (30) to selectively disconnect the motor assembly (40) from the counterbalance system (30), whereby urging of a rotatable handle (516) to a disconnect position (516′) allows the door (D) to be manually freely moveable with the aid of the counterbalance system (30).
Abstract:
A driving system for a garage door includes a track having an end fixed on an inside of a wall and has an open side that faces upward. A driving assembly is movably received in the track and driven by a motor. The driving assembly includes a connection member to which two ends of a power transferring member are connected. A U-shaped member is movably engaged with the track from an underside of the track and two sides of the U-shaped member are connected to the driving assembly. A link is pivotably connected between the U-shaped member and the garage door. The power transferring member reeves a gear which is rotatably connected to the track and the motor has a driving shaft which is conveniently extended through an opening of the track and engaged with an engaging hole of the gear.
Abstract:
A drive assembly moves a vehicle closure panel from an open to a closed condition. The drive assembly has a housing and a motor mounted on the housing. A drum and gear assembly is rotatably mounted on the housing. The drum and gear assembly has a drum having a helical groove, a gear in driving engagement with the motor, and a spring biasing the drum in a winding direction relative to the gear. The drum and gear have a lost motion connection therebetween. A cable has an end connected to the closure panel and an opposite end connected to the drum about the helical groove in the winding direction. The drum rotates in the winding direction relative to the stationary gear as the closure panel is manually moved from the open to the closed condition with the spring maintaining a cable tension. The drum and gear rotate together in the winding direction upon energizing the motor effecting powered movement of the closure panel to the closed condition. The motor is afterwards energized in an opposite direction counter-rotating the gear relative to the drum back to a start position.
Abstract:
A truck hood actuator is provided which, operating via a gear rack and DC motor-powered traveler or pinion gear and ring gear, can operate more quickly than a hydraulic actuator, or a worm or screw gear actuator. Further, by employing the disclosed gear rack and traveler, the actuator of the present invention can be readily employed and installed as an after market accessory or as OEM equipment at a lower cost than a hydraulic or other, more complex, actuators.
Abstract:
An on-demand power-operating door arrangement includes a supporting structure forming a passage, a door mounted to the supporting structure for closing the passage, and a power operator for operating the door. The power operator includes a motor, and a linkage operably connected to the motor and arranged to move the door to the passage-opening position. The door is manually swingable from a closed position to an open position independently of the linkage. The linkage and the door are returned from the door-opened position by respective springs, the spring which returns the door being weaker than the spring which returns the linkage.
Abstract:
A liftgate actuating assembly is disclosed for moving a liftgate of a motor vehicle between open and closed positions. The liftgate actuating assembly includes a motor that is fixedly secured to the motor vehicle. The motor has an output shaft capable of bi-directional rotation. A drive gear rotates about a drive shaft and is operatively connected to the output shaft to be rotated thereby. A cable drum is rotatably mounted to the drive shaft. The cable drum is coupled to the drive gear and is rotated thereby. The cable drum includes a cable wrapped thereabout between a drum end fixedly secured to the cable drum and a liftgate end fixedly secured to the liftgate. The cable is used to retract the liftgate from the open position to the closed position. A linkage is operatively connected to the drive gear. The linkage is from a retracted position to an extended position such that the linkage forces the liftgate from the closed position to the open position when the linkage moves from the retracted position to the extended position. The linkage includes a slot that provides lost motion within the linkage. This allows the liftgate to be move manually to the closed position without the motor being activated.
Abstract:
A system for raising and lowering a sectional overhead door between an open position and a closed position including, a counterbalance system adapted to be connected to the door, an operator motor assembly mounted proximate to the sectional overhead door in the closed position of the sectional overhead door, at least a portion of the operator motor assembly movable between a door operating position and a door locking position, and a locking assembly (370) having an engaged position to hold the motor assembly in the operating position and a disengaged position to release the motor assembly allowing it to move to the door locking position. The system may be provided with a remote light assembly having a switchable light source in sensing communication with the operator motor such that operation of the motor activates the light source. The system is further provided with a handle assembly (515) operatively engaging the motor assembly (40) and counterbalance system (30) to selectively disconnect the motor assembly (40) from the counterbalance system (30), whereby urging of a rotatable handle (516) to a disconnect position (516′) allows the door (D) to be manually freely moveable with the aid of the counterbalance system (30).
Abstract:
A power liftgate assembly is disclosed for moving a liftgate between an open position and a closed position. The liftgate is secured to a motor vehicle having a roof. The power liftgate assembly includes an elongated bracket that is fixedly secured to the roof of the motor vehicle. The elongated bracket extends between first and second ends. A motor is fixedly secured to the elongated bracket. A slide operatively engages the motor. The slide moves along the elongated bracket. An articulated bracket is connected to the slide and moves with the slide. The articulated bracket includes a slot that extends therealong to provide lost motion between the articulated bracket and the slide. An arcuate bracket extends between the articulated bracket and the liftgate for receiving the motion of the articulated bracket and for moving the liftgate in response thereto.