Abstract:
A filtered laser array assembly generally includes an array of laser emitters coupled between external modulators and an arrayed waveguide grating (AWG). Each of the laser emitters emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The AWG filters the emitted light from each of the laser emitters at different channel wavelengths associated with each of the laser emitters. Lasing cavities are formed between each of the laser emitters and a back reflector coupled to an output of the AWG such that laser output from the laser emitters is provided at the respective channel wavelengths of the reflected, filtered light. The external modulators enable high speed modulation of the laser output. The modulated laser output may then be optically multiplexed to produce an aggregate optical signal including multiple channel wavelengths.
Abstract:
A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.
Abstract:
A compact multi-channel optical may include a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA) and a circuit board configured and arranged to fit within a relatively small space. The multi-channel ROSA is spaced from the circuit board to allow circuit components to be mounted between the circuit board and the ROSA. The multi-channel ROSA may also be inverted and mounted proximate a transceiver top housing portion, for example, using an L-shaped ROSA support, to transfer heat from the ROSA to the transceiver housing portion. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The temperature controlled multi-channel TOSA generally includes an array of lasers optically coupled to an optical multiplexer, such as an arrayed waveguide grating (AWG), to combine multiple optical signals at different channel wavelengths. The lasers may be thermally tuned to the channel wavelengths by establishing a global temperature for the array of lasers and separately raising local temperatures of individual lasers in response to monitored wavelengths associated with the lasers. A temperature control device, such as a TEC cooler coupled to the laser array, may provide the global temperature and individual heaters, such as resistors adjacent respective lasers, may provide the local temperatures. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A thermally shielded multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A plurality of laser array thermal shields are thermally coupled to a temperature control device, such as a thermoelectric cooler (TEC), and thermally shield the respective lasers in the laser array in separate thermally shielded compartments. Each of the lasers may also be individually thermally controlled to provide a desired wavelength, for example, using a heater and/or cooler located in each thermally shielded compartment. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A thermally isolated multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. The lasers, and possibly other components, are wire bonded to a thermal isolation bar. The thermal isolation bar provides an electrical connection to external circuitry and is thermally coupled to a temperature control device, such as a thermoelectric cooler (TEC). Thus, the thermal isolation bar electrically connects the lasers to the circuitry while preventing external heat from being conducted to the lasers from outside the TOSA. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A multi-channel optical transceiver includes a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA), and a dual fiber type direct link adapter directly linked to the multi-channel TOSA and the multi-channel ROSA with optical fibers. The dual fiber type direct link adapter is also configured to receive pluggable optical connectors, such as LC connectors, mounted at the end of fiber-optic cables including optical fibers for carrying optical signals to and from the transceiver. The dual fiber type direct link adapter thus provides the optical input and output to the transceiver for the optical signals received by the ROSA and transmitted by the TOSA. The multi-channel optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A vertical-cavity surface-emitting laser (VCSEL) structure has a semiconductor bottom distributed Bragg reflector (DBR) arranged over a substrate; a metal mirror layer interposed between the bottom DBR and the substrate, wherein the metal mirror layer and bottom DBR are adapted to form a first mirror of the laser structure; and a reaction barrier layer interposed between the metal mirror layer and the bottom DBR, wherein the reaction barrier layer is adapted to reduce reaction between the metal mirror layer and the bottom DBR. A phase matching layer is interposed between the reaction barrier layer and the bottom DBR to adjust the phase of radiation reflected by the metal mirror layer such that an increased overall reflectance is obtained. The VCSEL is fabricated by bonding a first metal bonding layer formed over the bottom DBR and a metal mirror layer on a first substrate to a second metal bonding layer formed on a second substrate.
Abstract:
Low data rate, low power, bi-directional transmissions may be provided over existing physical communication media (e.g., coaxial cables and/or optical fiber) and in the presence of higher bandwidth, higher power primary signals currently being transmitted over the communication media. The low data rate, low power, bi-directional transmissions may be accomplished using spread-spectrum modulated signals that are positioned in frequency relative to the primary signals, such that the low data rate, low power transmissions occur without detectable interference with the primary signals, which include multiplexed narrowband modulated signals. In some embodiments, the primary signals may be modulated using quadrature amplitude modulation (QAM) and multiplexed using orthogonal frequency division multiplexing (OFDM) and the spread-spectrum modulated signals may be chirp spread spectrum (CSS) modulated signals modulated using Gaussian frequency shift keying (GFSK). One example of the spread-spectrum modulated signals is implemented using LoRa technology and communication protocols defined by the LoRaWAN standard.
Abstract:
Automatic gain control (AGC) may be accomplished in a radio frequency (RF) amplifier in a hybrid fiber-coaxial (HFC) network using a wideband RF tuner to select multiple pilot channels (e.g., frequencies in lower and upper portions of an RF signals spectrum) for use in measuring power and determining a correction to be applied to the RF amplifier. The power of the pilot channel or channels may be measured, for example, using a received signal strength indicator (RSSI) from the wideband RF tuner or using a power detector circuit. Using the wideband RF tuner allows selectable gain and/or tilt control across a wideband spectrum, such as a channel spectrum of a CATV downstream RF signal, to maintain stable RF output levels of the amplifier as RF input levels vary. The RF amplifier may be a line extender amplifier used in a CATV HFC network to amplify a wideband RF spectrum of up to 1.8 GHz.