Abstract:
A set of light-weight adaptor assemblies suitable for use with optical targets, angle sensors, or other instrumentation. A first configuration of adapter assembly within the set is easily secured against the outboard surfaces a large-diameter vehicle wheel assembly having a highly convex raised central hub region, without concern for precise axial alignment or centering, while a second configuration of adapter assembly within the set is easily secured against the outboard surfaces of a large-diameter vehicle wheel assembly having a highly concave recessed central hub region, without concern for precise axial alignment or centering.
Abstract:
A procedure for evaluating tire tread depth measurement data points acquired from a tread region on the surface of a tire in order to generate a representation of the tire tread region having an appearance of having been worn over time, so as to convey to a recipient a visual indication of potential tire tread wear at a point in time subsequent to the acquisition of the tire tread depth measurements.
Abstract:
A protective structure for an outdoor installation of a drive-over tire inspection system. The protective structure consists of a base incorporating approach and departure ramps, vehicle guides on each side of the respective ramps, a pair of sensor receiving recesses centrally disposed between the ramps, and at least one channel for draining water from within the sensor receiving recesses. A drainage channel and a conduit for the routing of data communication cables, power cables, and trigger signal cables connects the sensor receiving recesses. Optionally, protective bollards are disposed in proximity to the corners or sides of the protective structure, guiding vehicles onto the approach and departure ramps, and to prevent vehicles from crossing over the protective structure in unintended directions.
Abstract:
A turn plate assembly for support of the steered wheels of a vehicle on a precision planar surface. The assembly includes an approach plate establishing a planar surface to within an established measurement tolerance. The approach plate is coupled to a base plate underlying a bearing assembly consisting of a plurality of ball bearings retained between the base plate and an underside of a rotating support disc. An upper surface of the rotating support disc is coplanar with an upper surface of the approach plate. Resting on the upper surface of the rotating support surface, a translational surface or mat is temporarily secured in place by magnetic adhesion. During use, translational forces exerted on the translation surface or mat by a vehicle wheel assembly may overcome the magnetic adhesion, enabling the translational surface or mat to translate relative to the underlying rotating support disc.
Abstract:
A vehicle measurement station utilizing at least one displacement sensor systems disposed on each opposite side of a sensor region of a vehicle inspection lane to acquire measurement data, associated with a vehicle passing through the sensor region. Each displacement sensor system is configured to acquire measurement data along at least three discrete and vertically spaced measurement axis in response to a trigger signal indicating the presence of a vehicle moving through the inspection lane. A processing system receives the acquired data for evaluation, identification of outlier data points, and for determining a measurement associated with a characteristic of the moving vehicle.
Abstract:
A robotic tire changing machine having a processing system is configured with software instructions to carry out the procedures for tire mounting and demounting, and with software instructions to detect and respond to abnormal operating conditions during a tire mounting or demounting procedure. A specific response to the detection of an abnormal operating condition by the processing system is guided by the software instructions and is associated with the particular state in which the tire changing machine is in and/or the current step of an ongoing tire mounting or demounting procedure. The specific responses may include, but are not limited to, providing a prompt or instruction to an operator, providing a warning to an operator, carrying out one or more additional procedural steps, suspending operations to await an operator action, or limiting movement of articulated components during the tire mounting or demounting procedure.
Abstract:
A procedure for acquiring and utilizing vehicle license plate image data during a vehicle service or inspection process. Acquired license plate images are evaluated to identify visible license plate features including license plate characters and a license plate jurisdiction. The information is communicated to a data archive system which is configured to employ a set of jurisdiction localization rules to match a specific vehicle identification number to the license plate data. A compilation of the identified and matched data is communicated to a vehicle service system or inspection system, for utilization in a vehicle service procedure or inspection process.
Abstract:
A method and apparatus for utilizing a vehicle wheel alignment system to guide the placement and orientation of a vehicle service apparatus or alignment fixture relative to the thrust line of a vehicle. A laser adapter for projecting a reference line is mounted to a steerable wheel of the vehicle, and is aligned relative to both a line of the vehicle and to the supporting surface on which the vehicle is disposed. The vehicle line is determined by the vehicle wheel alignment system, and the steerable wheel, together with the adapter, are steered relative to the determined vehicle line, such that a projected reference line defined by the position and orientation of the adapter is established parallel to both the supporting surface and the vehicle line. The placement and orientation of the vehicle service apparatus or alignment fixture is subsequently adjusted relative to the projected reference line.
Abstract:
A drive-over tire tread depth measurement system is configured with components for preventing or impeding environmental contaminates from falling through openings in a vehicle support surface or cover plate onto sensor optical windows and adjacent surfaces. The components may include active mechanisms, in the form of air discharge assemblies, movable shields, guards, wipers or deflectors, and/or passive components such as drip edges, water-accumulating textured surfaces, flow diverters, and selectively placed flanges or fixed guards which operate cooperatively to displace accumulated contaminates, debris, or liquids from the optical windows and adjacent sensor surfaces on a periodic basis.