Abstract:
The present invention aims to control power consumption of a light emitting display device by reducing parasitic capacitance between wires in a drive circuit part of a periphery region. The light emitting display device of the present invention includes an insulation film arranged above a substrate, a first wiring arranged above the insulation film in a pixel region, a second wiring arranged above the insulation film in a periphery region of a periphery of the pixel region, a common electrode continuously arranged to the pixel region and the periphery region, a first insulation layer arranged between the first wiring and the common electrode, and a second insulation layer arranged between the second wiring and the common electrode and having a larger thickness than the first insulation layer.
Abstract:
Provided is a display device (1a), including: a substrate on which a plurality of pixels are arranged in a display region; a plurality of connection pads (C) provided on one surface of the substrate; and wires connecting the plurality of pixels and the plurality of connection pads to each other, the substrate including: a panel portion in which the plurality of pixels are arranged; and a terminal portion (30) in which the plurality of connection pads are arranged, the terminal portion including: a first portion (32) continuing to a first direction side of the panel portion; and a second portion (34) opposing the first portion, the second portion being formed by bending a portion of the terminal portion, the plurality of connection pads being arranged in the first portion and the second portion.
Abstract:
An organic EL display device includes: a TFT substrate that includes a display area in which pixels are arranged in a matrix; and a color filter substrate that is provided to face the TFT substrate and includes an area transmitting light in a predetermined wavelength range for each of the pixels. Each of the pixels of the TFT substrate includes a pair of electrodes, at least two light emission layers that are arranged between the pair of electrodes, and a charge generation layer that is arranged between the at least two light emission layers, is a layer to generate a pair of positive and negative charges, and has different film thicknesses in accordance with the predetermined wavelength range of the corresponding area.
Abstract:
In a state where an interface unit disposed on a rear surface of a portable terminal faces an interface unit disposed on a rear surface of a sheetlike display terminal, the portable terminal is put on the sheetlike display terminal. With this configuration, the portable terminal and the sheetlike display terminal are electrically connected to each other through the respective interfaces by capacitive coupling.
Abstract:
An organic electroluminescent display device includes a first insulating layer that buries a peripheral portion of a first electrode and has an opening exposing an area of the first electrode inner to the peripheral portion thereof; a second electrode that is in contact with the first electrode in the opening and is provided continuously on a top surface of the first electrode and onto a top surface of the first insulating layer; a second insulating layer covering a peripheral portion of the second electrode; an organic EL layer; and a third electrode. The second electrode includes a stepped portion. An area where the stepped portion is included and the second electrode, the organic electroluminescence layer and the third electrode overlap each other is a light emitting area. Light emitted by the organic EL layer is reflected by the stepped portion.
Abstract:
A sealing film includes a first inorganic layer that has, in a surface thereof, a convex portion corresponding to an upper surface of an element layer, a second inorganic layer that covers the first inorganic layer, and an organic layer disposed between these layers. The surface of the first inorganic layer includes a recurved area changed from an area around the convex portion to the convex portion, and a flat area surrounding the element layer. The flat area includes an outer peripheral area on an outer end of the first inorganic layer, and an inner peripheral area between the outer peripheral area and the recurved area. The organic layer has an end in the outer peripheral area, has another portion in the recurved area, and avoids the inner peripheral area. A part of the second inorganic layer contacts the first inorganic layer in the inner peripheral area.
Abstract:
In an organic EL display apparatus, a chromaticity change of image display due to deterioration in an OLED is corrected. The organic EL display apparatus includes an EC element layer formed of one kind or a plurality of kinds of electrochromic elements which are disposed on an OLED portion and develop colors. Each of the electrochromic elements has a peak in a transmission spectrum during development of a color in any one of the emission wavelength bands of the pixels corresponding to the plurality of colors. The electrochromic element receives a DC voltage from a driver so as to be driven. Chromaticity of image display is adjusted by controlling a color development intensity of the electrochromic element by using the DC voltage which is applied by the driver.
Abstract:
A display device includes contact holes opened in an insulating film outside of a display area in which pixels are arranged, and having a conductive film exposed in bottom portions, a first metal film formed to cover the contact holes and come in contact with the conductive film of the bottom portions, and a transparent conductive film formed on the first metal film.
Abstract:
An organic luminescent display device according to the invention includes: an element substrate; an organic film; and an organic electro luminescent element formed on the organic film. The organic electro luminescent element includes: an anode formed on the organic film; a light emitting layer formed on the anode; and a cathode formed on the light emitting layer. The anode includes: an adhesion layer formed in contact with an upper surface of the organic film; a reflection layer and formed in contact with an upper surface of the adhesion layer; and a light transmitting contact layer formed on the reflection layer. An edge portion of an outer periphery of the adhesion layer is positioned outside an edge portion of an outer periphery of the reflection layer as viewed in a plan view.
Abstract:
Organic EL display module including a pixel disposed in respective intersections between a plurality of scanning lines and a plurality of data lines, which lines are aligned in a matrix, and a current supply line that supplies electric current to the pixel, wherein the pixel includes an active device selected by the scanning line, a data storage device that stores a data signal that is supplied from the data line by control of the active device, and an organic light emitting device that emits light by the electric current supplied by the current supply line according to the data signal stored in the data storage device, wherein the data storage device provides a lower electrode, an insulating layer and an upper electrode, and wherein the lower electrode has a same layer with a channel layer of the active device and the upper electrode is made of a metal material.