Abstract:
The present invention provides a photosensitive recording material having a support, and a photosensitive layer and a protective layer formed in this order on or above the support. The photosensitive layer contains a polymerization initiator, a sensitizing agent, and a polymerizable compound. Further, the protective layer contains a water-insoluble and alkali-soluble dye that has an absorption wavelength region different from the absorption wavelength region of the sensitizing agent, and the dye is dispersed in a solid state in the protective layer. The present invention also provides a planographic printing plate precursor including the photosensitive recording material, a stack of the photosensitive recording materials, and a stack of the planographic printing plate precursors.
Abstract:
A compound having, in its molecule, a polymethine chain structure containing a partial structure represented by the following formula (1-1), and an image forming material containing the same. In the formula (1-1), R1, R2, R3, R4, and X each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group. The image forming material is useful as the image recording layer of a planographic printing plate precursor.
Abstract:
An infrared-sensitive planographic printing plate precursor including: a support; a recording layer capable of forming an image through infrared irradiation provided on or above one surface of the support, the recording layer containing a resin, which is water-insoluble and alkali-soluble, and an infrared absorbent; and an organic polymer layer provided on or above the other surface of the support, wherein when the organic polymer layer is formed, a solvent is used, and the total amount of solvent remaining in the organic polymer layer is 10 mg per gram of the organic polymer or less is provided.
Abstract:
There is disclosed a direct drawing type lithographic printing plate material comprising a support and an image-forming layer formed on the support, wherein the image-forming layer is formed on a roughened surface of the support and contains a binder and a pigment having a relatively small particle size. The direct drawing type lithographic printing plate material of the present invention has extremely excellent water retention property and is capable of suppressing scumming upon printing, degradation of printing density and image blur even when the amount of a humidifying solution to be supplied is increased upon printing, and minimizes printing defects which otherwise occurs when a printing operation once stopped is resumed or the like.
Abstract:
The present invention relates to an image forming material having, on a substrate, an image forming layer that includes at least (A) a novolac type phenolic resin containing phenol as a structural unit, (B) a photo-thermal converting agent, and (C) a specific ammonium compound or a specific onium salt.
Abstract:
(1) A packaged body of lithographic printing plate precursors, wherein an image-recording layer or a protective layer of the outermost surface layer contains an inorganic layered compound. (2) A lithographic printing plate precursor having a protective layer containing an inorganic layered compound, and an image-recording layer containing a binder polymer. (3) A lithographic printing plate precursor having a protective layer containing an inorganic layered compound, and an image-recording layer containing an infrared absorber and an iodonium compound.
Abstract:
Lithographic printing plates are imaged using an inkjet printer to imagewise apply a chemical or masking agent onto the plate surface. In some embodiments, the chemical causes an affinity change, thereby facilitating lithographic printing.
Abstract:
A positive image recording material applicable to infrared laser comprising a support whereon is formed a photosensitive/heatsensitive layer containing (A) an alkali-soluble resin, (B) a photothermal conversion substance, and (C) at least one compound selected from a group of compounds defined by the formulae (I), (II), (III), and (IV) exhibiting improved solubility to an alkaline developer following exposure with an infrared laser wherein the substituent groups of the formulae (I) to (IV) are specified in the specification for this invention.
Abstract:
Solubility transitions rather than ablation mechanisms facilitate selective removal of the imaging layer of a lithographic plate, which allows for imaging with low-power lasers that need not impart ablation-inducing energy levels.
Abstract:
A method of graft polymerization which includes a step of forming a polymerization initiating layer in which a polymer having, on a side chain thereof, a crosslinking group and a functional group having polymerization initiating capability is immobilized on a support by a crosslinking reaction, and a step of conatacting a compound having a polymerizable functional group with the polymerization initiating layer, and then bonding the compound to the polymerization initiating layer supplying energy thereto, as well as a hydrophilic member, a printing plate precursor, a pattern forming material, a pattern forming method, a method of producing a particle-adsorbed material, and a method of producing a metal particle-dispersed thin layer film, to which the above-mentioned method of graft polymerization can be applied.