Abstract:
There is disclosed an improved radiation source module having a power supply adapted to be at least partially immersed in a fluid being treated. In one embodiment, the power supply is partly immersed in the fluid being treated. In another embodiment, the power supply is fully submersible in the fluid being treated. A fluid treatment system comprising the radiation source module is also described.
Abstract:
An adaptive optics system configured as an optical phase front measurement system which provides for relatively high resolution sampling as in holographic techniques but without the need for a reference beam. The optical phase front measurement system includes one or more lenses and a spatial light modulator positioned at the focal plane of the lenses and a camera which enables the phase front to be determined from intensity snapshots. The phase front measurement system allows for relatively long range applications with relatively relaxed criteria for the coherence length of the laser beam and the Doppler shift. As such, the system is suitable for a wide variety of applications including astronomy, long range imaging, imaging through a turbulent medium, space communications, distant target illumination and laser pointing stabilization.
Abstract:
The present invention provides a device that uses an ultraviolet LED to locate fluorescent materials. In particular, the present invention is directed to a device that is used to detect leaks, cracks or fissures in a contained system, such as, for example, an air conditioning system for a vehicle. The device has a main body, an ultraviolet LED mounted to the main body so that ultraviolet light from the LED is directed away from the device, and a power source linked to the ultraviolet LED to provide power to the LED. The ultraviolet LED can be an UVA LED. Moreover, the wavelength of the ultraviolet light produced by tho LED is about 315 nm to about 400 nm. The method of the invention for locating fluid leaks can comprise, for example, introducing an ultraviolet dye into a fluid in a contained system, such as, for example, an air conditioning system of a vehicle, and illuminating an area of the system to be checked for fluid leaks with an ultraviolet LED light source. The ultraviolet light from the LED causes the ultraviolet dye in the fluid to fluoresce.
Abstract:
The invention relates to a simple and relatively inexpensive way of determining the optical bit rate of an optical signal, which is based on the fact that different percentages of the signal will be transmitted through a narrow-band optical filter depending on the bit rate. Increasing the bit rate of an optical signal results in a broadening of the channel spectrum, therefore, if the optical filter is designed with a passband thinner than all (or all but one) of the channel widths, then signals with different bit rates will have distinctive amounts of transmitted light relative to the amount of input light. In the preferred embodiment the optical signal is divided into two sub-beams by a beam splitter, and one of the sub-beams is passed through the optical filter. The power of filtered sub-beam is compared to the power of the unfiltered sub-beam to provide a ratio, which is compared to one or more predetermined values indicative of the bit rate. The optical filter is preferably a Fabry-Perot etalon with a periodic response tuned to the ITU grid.
Abstract:
The present invention relates to a novel methods and system for measuring multi-segment LED module. The present method utilizes a camera to photograph an image of the multi-segment LED modules, and proceeds an image vector location algorithm in a computer to ensure the bright part of the photographed image could be captured stably and to overcome rotating and shifting problems of the conventional multi-segment LED modules. By the image-processing steps of the present invention, the problems of low throughput and errors occurred in the prior art could be efficiently resolved.
Abstract:
A target 3, which is composed of a compound material containing a gaseous component element, is subjected to cathode discharge with a cathode 30 while closing a main valve 4 and a gas-introducing valve 9 to tightly close a vacuum chamber 1. The vacuum chamber 1 is not subjected to reduction of pressure with a vacuum pump 5 by opening the main valve 4. Therefore, the gaseous component element, which is contained in the compound material, is not discharged by the vacuum pump 5. Accordingly, almost all of the gaseous component element contained in the compound material is successfully allowed to adhere and deposit onto a substrate 2. Therefore, a thin film, which has a composition extremely close to that of the compound material, is formed on the substrate 2. According to the film formation method as described above, a compound film, which is used as a coating material for an optical element, can be formed in a desired composition on the optical element. Therefore, it is possible to obtain the optical element which has extremely high optical transmission. Such an optical element is preferably used for a projection lens of an exposure apparatus which uses a light source of a laser beam in a vacuum ultraviolet region.
Abstract:
Apparatus and method for patterned sequential lateral solidification of a substrate surface, avoiding the need for demagnification to avoid mask damage from fluence sufficient to overcome the threshold for sequential lateral solidification, while using the high throughput of a common stage presenting both 1:1 mask and substrate simultaneously for patterning. The radiation source provides imaging beam and non-imaging beam, each of fluence below the threshold of sequential lateral solidification, but with aggregate fluence above the threshold. The imaging beam path includes a relatively delicate 1:1 mask and 1:1 projection subsystem, with optical elements including a final fold mirror proximate to the substrate surface, put the below-threshold mask pattern on the substrate surface. The non-imaging beam bypasses the delicate elements of imaging beam path, passing through or around the final fold mirror, to impinge on the substrate surface at the same location. Where the radiation patterns of the masked imaging beam and non-imaging beam coincide, their aggregate fluence exceeds the threshold for sequential lateral solidification. The dual selection provides pattern without damage to delicate optical elements.
Abstract:
An apparatus for controlling the position of a screen pointer for an electronic device having a display screen includes a plurality of sensing elements against which a portion of the tip of a human digit may be placed. A controller coupled to each of the sensing elements senses an electrical property at each of the sensing elements. The controller is configured to generate values representing the portion of the tip of the digit placed against the sensing elements based on the sensed electrical property at each of the sensing elements. The controller is configured to generate movement data based on the values. The movement data is indicative of motion of the tip of the digit across the sensing elements.
Abstract:
A linear induction accelerator, comprised of an injector block, acceleration block, the outlet device, and a drive source. The acceleration block is made from not less than two electrodynamically bound acceleration blocks of the single-channel linear induction accelerators, which are mutually oriented in such way that the direction of the electric field in any of the working channel is opposite to the electric field direction at least in one of the neighboring single-channel blocks of the single-channel linear induction accelerators. The invention allows a decrease of the real dimensions of the accelerator structure, increase of the electromagnetic compatibility level, technology and user safety, and a simplification of structure.
Abstract:
A first stage and a second stage are disposed to face each other. A first object is fixed on the first stage. A first displacement sensor attached on the first stage is used to measure a distance extending from the first displacement sensor to a plane disposed in front of the first displacement sensor. A second object is fixed on the second stage. A second displacement sensor attached on the second stage is used to measure a distance extending from the second displacement sensor to a plane disposed in front of the second displacement sensor. A moving mechanism is provided to move one of the first stage and the second stage, with the movement of one stage being relative to the other stage.